Current Buckley Lab members/affiliates

Tom Buckley (PI)

Colleen Mills (PhD student)

Ian Boyles (PhD student)

Marshall Pierce (MS student [finishing Fall 2021])

Cecilia Langlois (undergraduate research assistant)

Kayli Vest (undergraduate research assistant)

Ethan Frehner (PhD student, co-advised with Brian Bailey)

Marie Klein (PhD student in Gail Taylor’s lab, co-supervised by Troy Magney and me)

Chris Wong (postdoc, shared with Troy Magney’s lab)


Former lab members (from UC Davis or the University of Sydney)

Heather Vice (MS student, now with NRCS)

Dongliang Xiong (Postdoc, now at Huazhong Agricultural University)

Paula Guzmán Delgado (Postdoc, now in Maciej Zwieniecki’s lab)

William (Tam) Salter (Postdoc, currently at the University of Sydney)

Rose Deng (Postdoc, now at Flinders University in Adelaide)


Lab visitors

Chris Muir (University of Hawai’i at Manoa)

Jacob Watts (Colgate)

Andrew Merchant (University of Sydney)

Tam Salter (University of Sydney)

David Coleman (University of Sydney)

Carel Windt (Forschungzentrum Julich)


Frequent collaborators

Lawren Sack (UCLA)

Mark Adams (Swinburne University of Technology)

Antonio Diaz-Espejo (CSIC, Seville, Spain)

Matthew Gilbert (UC Davis Plant Sciences)


Tom Buckley






BS Biology, 1994, James Madison University, summa cum laude, Minors in Mathematics and Chemistry

PhD Biology, 1999, Utah State University

Google Scholar  /  ResearchGate  /  Twitter

publications  /  cv  /  email


I joined the Department of Plant Sciences at UC Davis in late 2017, after five years at the University of Sydney, where I was a GRDC Senior Lecturer based at the remote IA Watson Grains Research Centre in Narrabri, NSW. Before that, I was on the faculty in the Department of Biology at Sonoma State University for five years. I’m originally from Virginia but have spent the last 25 years in Utah, Australia and California.

I got interested early on in how plants thrive in difficult environments as a result of childhood winter backpacking trips to Dolly Sods in the Allegheny Plateau of West Virginia — the southernmost extension of the North American boreal forest. A college friend encouraged me to study multivariable calculus, which spiralled into a math minor and a persistent interest in applying math to the study of plant-environment interactions. My PhD project involved how different leaf pores (stomata) on the same leaf surface interact physically with one another, causing their behaviors to become entrained and generating spatially patchy patterns of leaf diffusive conductance to CO2 and water vapor that influence interpretation of whole-leaf gas exchange measurements as well as the economy of carbon-water relations. A collaboration with Graham Farquhar and Peter Franks led to many years of postdocs in Australia, and a strong interest in how biophysical processes translate across scales and interact with forces of natural selection to create the patterns we observe in nature.

A major branch of my research has long involved filling gaps in plant ecophysiology’s modeling framework and using those models to address fundamental questions in plant biology. I’ve created or helped to create models of stomatal function (1,2,3), transdermal scaling of photosynthesis (1), water transport distal to the xylem in leaves (1,2,3,4)  and optimal whole-tree carbon partitioning (1). Questions to which these models have been applied include stomatal water relations (1,2,3,4), the effect of leaf anatomy on stomatal function (1), the physiological economics of structural acclimation and growth during height growth and response to elevated CO2 (1,2,3), the role of hormonal signals in stomatal responses to drought (1), inference of nocturnal transpiration from sap flow (1), the economics of CO2 transport within leaves (1), the economy of canopy-scale distribution of nitrogen and water resources (1,2,3,4), the distribution of evaporation within leaves (1) and the interaction of leaf respiration and photosynthesis (1). Students, postdocs and visitors interested in work on process-based and optimization-based theoretical and computational modeling of plant function are always welcome, and encouraged to contact me.

Research in the Buckley Lab has developed an increasing focus on experimental and observational work over the past decade. Today, our research involves a close and continuous interplay between measurement and theoretical modeling. Many of our projects involve, either collaterally or as the primary focus, improving or creating new methods to measure plant function in vivo. You can find an overview of current projects on the Research page.