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Abstract
Frequent drought and high temperature conditions in California vineyards necessitate plant stress detection to support irriga-
tion management strategies and decision making. Remote sensing provides a powerful tool to continuously monitor vegeta-
tion function across spatial and temporal scales. In this study, we utilized a tower-based optical-remote sensing system to 
continuously monitor four vineyard subplots in California’s Central Valley. We compared the performance of the greenness-
based normalized difference vegetation index (NDVI) and the physiology-based photochemical reflectance index (PRI) to 
track variations of eddy covariance estimated gross primary productivity (GPP) during four stress events between July and 
September 2020. Our results demonstrate that NDVI was invariant during stress events. In contrast, PRI was effective at 
tracking the short-term stress-induced declines and recovery of GPP associated with soil water depletion and increased air 
temperature, as well as reductions in GPP from decreased PAR caused by smokey conditions from nearby fires. Canopy-scale 
remote sensing can provide continuous real-time data, and physiology-based vegetation indices such as PRI can be used to 
monitor variation of photosynthetic activity during stress events to aid in management decisions.

Introduction

Water management is critical in California vineyards as 
water deficits, high temperatures and high vapor pressure 
deficits (VPD) occur frequently and are often a key limiting 
factor in productivity and yield (Draper et al. 2003; Tanaka 
et al. 2006). Climate change will further exacerbate drought 

and high temperature conditions leading to increased fre-
quencies and severity of major stress events (Strzepek et al. 
2010; Ficklin and Novick 2017). Therefore, it is important 
to employ appropriate irrigation strategies to maintain pro-
ductivity and yield (Matthews and Anderson 1989; Reynolds 
and Naylor 1994; Jones and Davis 2000) and also to improve 
grape quality (Chaves et al. 2010). Real-time assessment 
of plant stress will be essential for improving irrigation 
management.

Drought stress results in physiological responses influenc-
ing grapevine function (Gambetta et al. 2020), including 
reduced stomatal conductance (Flexas et al. 1998; Buckley 
2019), osmotic adjustment (Patakas and Nortsakis 1999; 
Blum 2017), altered pigment composition (Jaleel et  al. 
2009), and chloroplast movement (Kasahara et al. 2002), 
all of which can ultimately influence photosynthetic activity 
(Reddy et al. 2004; Chaves et al. 2009). To address this, dif-
ferent approaches have been developed for real-time detec-
tion of drought stress. One standard indicator of water stress 
is leaf or stem water potential measured with pressure cham-
bers (Girona et al. 2006). This approach, however, is labor 
intensive, error prone from subjectivity, and destructive, 
limiting its practicality over large areas with high temporal 
frequency. Thus, there is significant interest in employing 
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remotely sensed products for monitoring plant water stress 
at high spatial and temporal resolutions (Ihuoma and Madra-
mootoo 2017).

Two main remote sensing approaches have been used to 
track physiological changes in vineyards: thermal infrared- 
and optical-based remote sensing. Thermal infrared-based 
remote sensing measures canopy surface temperature, which 
is strongly influenced by evaporative cooling and hence sto-
matal conductance (Khanal et al. 2017) and can be used 
to serve as an indicator of water stress (González-Dugo 
et al. 2006). The crop water stress index (CWSI), which is 
based on differences between air and canopy temperatures 
(Jackson et al. 1981), has been used to quantify plant water 
stress (Jackson et al. 1988; Prueger et al. 2019). However, 
data are often taken during a small time window (close to 
solar noon and clear skies) and require crop-specific baseline 
calibrations that may further vary across weather conditions 
and time (Alves and Pereira 2000). While thermal-based 
approaches have been shown to be a useful tool for esti-
mating evapotranspiration (ET) and stress, the capability of 
these methods to determine plant stress using satellite data 
can be limited by latency issues and the pixel resolution 
of thermal infrared sensors (Knipper et al. 2019b; Bellvert 
et al. 2020). Alternatively, optical-based remote sensing 
has emerged as a viable option to infer information about 
canopy structure and function (Ustin et al. 2004; Blackburn 
2007). The normalized difference vegetation index (NDVI) 
is commonly used to assess canopy structure and light har-
vesting (Myneni and Williams 1994; Carlson and Ripley 
1997). NDVI has shown promise for detecting vegetation 
response to drought stress (Peters et al. 2002; Ji and Peters 
2003; Gu et  al. 2008). However, NDVI largely reflects 
changes in canopy structure due to leaf movement, wilting 
and chlorophyll degradation (Gitelson et al. 2014). There-
fore, physiology-based vegetation indices may better serve 
to capture dynamic changes in leaf pigment composition that 
are associated with photosynthetic activity and stress (Ustin 
et al. 2004; Blackburn 2007).

The photochemical reflectance index (PRI) is sensi-
tive to changes in the xanthophyll cycle and often used as 
a proxy of photosynthetic efficiency (Gamon et al. 1992, 
1997; Peñuelas et al. 1995). The xanthophyll cycle involves 
conversion of the carotenoid pigment violaxanthin to anther-
axanthin and zeaxanthin to dissipate excess absorbed energy 
when photosynthesis becomes saturated or limited under 
stress conditions; this conversion reverses upon recovery, 
typically at daily timescales (Demmig-Adams and Adams 
1996). At seasonal timescales, PRI is sensitive to the ratio 
of carotenoid to chlorophyll pigment pools but remains a 
good indicator of seasonal photosynthetic activity (Garrity 
et al. 2011; Wong and Gamon 2015). Since PRI is sensitive 
to both short- and long-term physiological variation of carot-
enoid pigments (Gamon and Berry 2012), it may provide a 

robust indicator of seasonality, short-term stress, and pro-
longed stress events. However, due to this sensitivity across 
temporal scales, PRI may require disentangling to separate 
short-term vs long-term signal contributions to optimize PRI 
performance (Hmimina et al. 2015). In this context, recent 
studies have highlighted the short-term sensitivity of PRI 
for reflecting drought stress in agricultural cropping systems 
like tomatoes, nut and fruit tree orchards, quinoa, wheat, 
and vineyards (Thenot et al. 2002; Zarco-Tejada et al. 2005, 
2013; Suárez et al. 2008; Sarlikioti et al. 2010; Magney 
et al. 2016). Therefore, for grapevines, we hypothesize that 
by disentangling the long- and short-term PRI signal, PRI 
will reflect both seasonal variation and dynamic variation 
in photosynthetic activity due to stress events as well as the 
subsequent recovery.

In this study, we deployed a scanning tower-based opti-
cal spectrometer system to continuously monitor four vine-
yard subplots in California’s Central Valley from July 19 to 
September 23, 2020. We identified the occurrence of four 
stress events based on a short-term decline and recovery 
represented by gross primary productivity (GPP) variation 
estimated by eddy covariance. Assuming that stress events 
influence physiological mechanisms regulating photosyn-
thetic activity and thus GPP, vegetation indices derived from 
optical-based remote sensing may perform as proxies of GPP 
variation during short-term stresses. Our objectives were 
to apply a simple detrending analysis to disentangle long- 
and short-term variation of NDVI and PRI to (1) evaluate 
the performance of NDVI and PRI for reflecting short-term 
stress events; and (2) and evaluate potential hysteresis effects 
between GPP and NDVI, and PRI during stress response 
and recovery.

Methods

Vineyard

This study is part of the USDA-ARS Grape Remote Sens-
ing Atmospheric Profile and Evapotranspiration eXperi-
ment (GRAPEX) (Kustas et al. 2018) conducted at a com-
mercial vineyard block in California’s Central Valley. The 
vineyard block was planted with merlot (Vitis vinifera L.) 
in 2010 and trained on a split trellis. It contains a variable 
rate drip irrigation (VRDI) system that allows delivery of 
irrigation amounts to vary at 30 m resolution. The vineyard 
block (RIP720) was divided into four subplots (with subplots 
referred to as RIP1–RIP4) each approximately four hectares 
in size representing northwest (RIP1), northeast (RIP2), 
southwest (RIP3), and southeast (RIP4) quadrants. Soil 
type is loam/sandy loam. The vineyard subplots have maxi-
mum canopy heights ranging from 1.5 to 2.2 m, with space 
between rows of 3.35 m and vine spacing of approximately 
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1.5 m along an east–west row orientation. In the interrow, 
the understory during the field measurements consisted of 
senescent grass stubble. Therefore, we assume minimal 
understory contributions to the canopy-scale carbon flux 
measurements during the observation period. This was also 
recently validated by Zahn et al. (2022) whose study of flux 
partitioning methods using eddy covariance tower measure-
ments included RIP720 measurements.

Eddy covariance

Micrometeorological and carbon flux measurements were 
collected for the full growing season from each subplot 
using eddy covariance flux towers. Each of the four subplots 
were equipped with identical instrumentation located in the 
southeast corner of each subplot. The system was equipped 
with an integrated open path infrared gas analyzer and sonic 
anemometer, IRGASON (Campbell Scientific Inc., Logan, 
USA1) mounted 4.5 m above local ground level facing west. 
Fluxes were collected at 20 Hz and surface fluxes were esti-
mated over 30 min time periods. Anomalous records in the 
high-frequency data were removed using a de-spiking mov-
ing window algorithm. Flux estimates were corrected by 
applying a two-dimensional coordinate rotation of the three 
wind speed components as well as for sensor displacement 
and frequency response attenuation. Sonic temperatures 
were corrected based on Schotanus et al. (1983), and the 
resulting fluxes were adjusted by the Webb, Pearman and 
Leuning (WPL) density corrections (Webb et al. 1980). 
Additional meteorological instruments were: an NR01 net 
radiometer (Hukseflux); an EE08 temperature and relative 
humidity probe (E + E Elektronik) in an aspirated shield 
(Apogee Instruments, Logan, USA); and soil moisture and 
temperature sensor (Stevens HydraProbe, Oregon, USA) 
installed at 5 cm depth (only soil temperature used).

Soil moisture

Near the center of each subplot, two CS655 soil mois-
ture sensors (Campbell Scientific Inc., Logan, USA) were 
installed at a 30 cm depth. The soil moisture sensors were 
located about 30 cm apart from each other at either side of 
the vine row. Data were logged every 15 min. We averaged 
the two soil moisture readings together for subplot soil volu-
metric water content (VWC).

Air quality

Daily mean particulate matter (PM2.5 and PM10) data 
were downloaded from the US Environmental Protection 
Agency (EPA) Air Quality System Data Mart. The nearest 
monitoring station was located in Madera, CA (AQS Site 
ID: 06-039-2010; 36.953256° N, −120.034203° W), about 
16 km northeast of the vineyards.

Tower‑based spectrometer system

A single tower-based spectrometer system was located in 
the center of the four vineyard subplots. The spectrometer 
system was modified from the PhotoSpec system described 
in Grossmann et al. (2018) consisting of a 2D scanning tel-
escope unit mounted at a height of 10 m for repeat targeted 
views. This telescope enables a narrow field of view (FOV) 
of 0.7°. However, for the entire duration of the experiment, 
an opal diffuser was used for all measurements to approxi-
mate a bi-hemispherical FOV to acquire average illumi-
nated canopy spectra. Canopy spectra were determined 
using a Flame VIS–NIR Spectrometer (Ocean Optics, Inc., 
Orlando, FL, USA) with a 350–1000 nm wavelength range 
and 1.33 nm full width half maximum optical resolution.

Nine target locations were randomly selected for each 
vineyard plot covering sensor viewing angles of 30, 35, and 
40° below horizon. For timely coverage, the camera rotated 
between subplots RIP1 through RIP4 (in order of RIP3, 
RIP1, RIP2, RIP4 and in reverse) every three targets, with a 
sky measurement (upward facing) between every six targets. 
At each target and sky measurement, multiple measurements 
occurred over a period of 60 s with integration time being 
auto adjusted to optimize signal to noise ratio and prevent 
saturation (at 80% signal saturation). A full cycle across all 
subplots (nine targets per plot; n = 36) took about 1.5 h and 
a semi-plot cycle (three targets per plot for single viewing 
angle, n = 12) took about 30 min.

Reflectance was calculated for each target measurement 
by dividing raw values by the corresponding sky measure-
ment. From the spectral data, the normalized difference 
vegetation index (NDVI) and photochemical reflectance 
index (PRI) were calculated. NDVI was calculated as 
NDVI = (RNIR − RRed)/(RNIR + RRed), where RNIR is the aver-
age reflectance from 830 to 860 nm and RRed is the aver-
age reflectance from 620 to 670 nm. PRI was calculated 
as PRI = (R531 − R570)/(R531 + R570) where R531 is the aver-
age reflectance from 526 to 536 nm and R570 is the average 
reflectance from 565 to 575 nm.

We calculated half-hourly NDVI and PRI by averag-
ing all targets per plot to the nearest half-hourly win-
dow to match the half-hourly eddy covariance measure-
ments. Daily mean NDVI and PRI were determined from 
a solar-noon window between 11 and 16 h to minimize 

1 Mention of trade names or commercial products in this publication 
is solely for the purpose of providing specific information and does 
not imply recommendation or endorsement by the U.S. Department 
of Agriculture.
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the influence of sun-sensor angular effects. To ensure that 
minimal sun-sensor angular effects, we calculated phase 
angle, which accounts for the angle between the sun and 
sensor (Doughty et al. 2019; Joiner et al. 2020). Phase 
angle incorporates the relative azimuth angle (RAA) 
between sensor viewing azimuth angle (VAA) and solar 
azimuth angle (SAA) relative to north in a clockwise 
direction (RAA = VAA − SAA). In addition, phase angle 
also accounts for solar zenith angle (SZA) and viewing 
zenith angle (VZA) and calculated as: Phase angle =  co
s−1[cos(SZA) × cos(VZA) + sin(SZA) × sin(VZA) × cos(
RAA)]. Figure 1 shows minimal variation of NDVI and 
PRI across phase angles indicating a suitable window for 
daily means.

Stem water potential

From July 26 to August 2, 2020, stem water potential was 
measured between 11 and 16 h in 14–24 leaves per subplot. 
Fully matured leaves were placed in a reflective bag about 
40 min prior to excision to prevent transpiration and allow 
the leaf to equilibrate with the stem. Water potentials were 
measured using a PMS Model 1505D pressure chamber 
(PMS Instrument Company, Albany, OR, USA).

Statistical analysis

In this study, we calculated daily means of solar noon from 
11 to 16 h of the half-hourly eddy covariance data (GPP, 
air temperature, soil temperature, and vapor pressure deficit 
[VPD]), soil moisture (VWC) and the spectrometer system 
(NDVI and PRI). To smooth the data, we used 5-day run-
ning means. Based on the GPP timeseries, we identified four 
stress events characterized by a decline and recovery of daily 
GPP. The dates were selected using a stable baseline GPP 
chosen prior to a decline (stress response) and after a return 
to baseline (recovery) of the subplot averages. These events 
include an intensive observation period (IOP) from July 21 
to Aug 6 where the four vineyard subplots underwent dif-
ferent watering regimes to induce drought stress (July 26 to 
Aug 2; see other papers in this issue). The remaining stress 
events were natural occurrences driven by environmental 
conditions including a heatwave (increased temperatures) 
and smoke (reduced incoming radiation caused by smoke 
from nearby wildfires): Stress Event 2 (Aug 6 to Aug 21; 
mostly heatwave); Stress Event 3 (Aug 21 to Sept 1; smoke); 
and Stress Event 4 (Sept 1 to Sept 14; temperature and 
smoke).

Statistical analyses were all performed in R (R Develop-
ment Core Team 2020). To isolate the stress response and 

Fig. 1  Phase angle effects of 
sun-sensor angles across all 
targets measurements between 
11 and 16 h from July 21 to July 
25 for NDVI (a) and PRI (b)
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recovery of GPP and PRI during each stress event and to 
minimize the influence of seasonal variation, we disentan-
gled the short-term vs long-term responses by detrending 
the daily GPP, NDVI, and PRI values for each stress event 
using the pracma package (Borchers 2019). Detrending 
involves identifying a linear trend between two timepoints 
(identified using GPP and dates listed above) and subtract 
mean values from each data point to remove the linear trend. 
Random Forest analysis was used to identify variable impor-
tance for explaining the variation of GPP during the stress 
events. Variables included eddy covariance meteorological 
data, and air quality data (particulate matter [PM] 2.5 and 
10) data. We used the Boruta package for Random Forest 
analysis (Kursa and Rudnicki 2010) to run iterations until all 
parameters were stabilized with a maximum iteration limit 
of 2000 times to determine variable importance via the mean 
decrease accuracy measure.

Results

During the growing season from July 19 to Sept 23, 2020, 
we identified the occurrence of four stress events based on a 
decline and recovery of GPP across all four grapevine sub-
plots (Fig. 2a). These stress events were driven in part by 
a combination of environmental conditions that included 
air temperature, incoming global solar radiation, and soil 
moisture (Fig. 2). Enhanced temperatures were consistent 
across all stress events (Fig. 2b). During the IOP, the drip 
irrigation schedule was reduced to induce drought stress 
(Fig. 2d). Here, we observed declined levels of GPP, as 
well as decreased stem water potentials (Fig. 2f). Later in 
the season, Stress Events 2, 3, and 4, included variation of 
incoming global solar radiation that was mainly attributed 
to smoke from nearby fires that resulted in enhanced levels 
of PM10 and PM2.5 concentrations (Fig. 2e).

To further explore the contributions of environmental 
drivers to GPP variation, we utilized Random Forest analy-
sis to evaluate relative variable importance (Fig. 3). For the 
Full Observation Period, all environmental conditions were 
important drivers in explaining GPP with VWC being the 
most important (Fig. 3a). For each of the stress events, the 
main environmental drivers varied as well as the explained 
variance percentage. For each stress event, the main envi-
ronmental drivers for (Fig. 3b–e): IOP included air tempera-
ture, incoming radiation, VPD, and PM2.5; Stress Event 2 
included air quality (PM2.5, PM10, and incoming radiation); 
Stress Event 3 included VWC and VPD; and Stress Event 
4 included irrigation and VWC. The IOP and Stress Event 
2 were best explained 83% and 63%, respectively, while 
Stress Events 3 and 4 were poorly explained 16% and 22%, 
respectively.

Continuous measurements of canopy-scale NDVI 
exhibited relatively consistent values across individual 
target measurements and stable values across all stress 
events during the growing season (Fig. 4a). In contrast, 
PRI varied between target measurements, and within and 
between stress events with all plots showing similar pat-
terns (Fig. 4b). Within stress events, PRI generally showed 
a decline and recovery, similar to the patterns observed for 
GPP. However, during the entire observation period, PRI 
exhibited longer-term variation with general increases and 
declines across stress events. Due to the combination of 
both short- and long-term influences on the PRI signal, we 
detrended GPP, NDVI, and PRI for each stress event rep-
resented by the grey regions (Fig. 4). Detrending involves 
fitting a linear line to the data and removing the slope 
(Fig. 5a). This limits the variability of data to the short-
term dynamics associated with the stress event and mini-
mizes the influence of longer-term dynamics (Fig. 5b).

Detrending GPP, NDVI, and PRI per subplot for 
each predefined stress event highlights short-term stress 
response (Fig. 6). Stress events defined from GPP demon-
strates the stress response (decline) and recovery (increase) 
representing near 40% of the total signal (Fig. 6a). In 
contrast, detrended NDVI showed an opposite pattern to 
detrended GPP, with an initial increase and subsequent 
decline, but the range of NDVI variation is very low (less 
than 3% of total signal) (Fig. 6b). Detrended PRI had a 
similar pattern to detrended GPP representing closer to 
20–30% of the total signal (Fig. 6c). Between subplots, 
only detrended GPP during the IOP showed distinct dif-
ferences between subplots, whereas detrended NDVI and 
PRI were unable to resolve differences between subplots 
with most values overlapping (Fig. 6). Interestingly, the 
detrended NDVI and PRI patterns during Stress Event 4 
decoupled with the GPP pattern with multiple declines and 
recoveries (Fig. 6).

The relationships between GPP and PRI are shown in 
Fig. 7. Across the full observation period (Fig. 7a), the 
overall relationship between GPP and PRI was R2 = 0.25 
(p < 0.001). The relationships per subplot were slightly 
higher (R2 = 0.26–0.37, p < 0.001). For each stress event 
(Fig. 7b–e), detrended GPP and PRI relationships were 
generally higher than across the full observation period 
with R2 of 0.46, 0.47, and 0.33 for the IOP, Stress Event 2, 
and Stress Event 3, respectively. The individual relation-
ships per subplot and response/recovery were generally 
much higher with an R2 > 0.50 and ranging up to 0.92. The 
R2 showed no bias towards response or recovery periods. 
Interestingly, Stress Event 4 had a non-significant overall 
relationship but at the response/recovery level, relation-
ships of the stress response were high (R2 = 0.72–0.89, 
p < 0.05), while recovery was non-significant (Fig. 7e).



 Irrigation Science

1 3

Discussion

During the growing season, we observed four stress events 
based on the short-term response and recovery of GPP in all 
four vineyard subplots. These stress events were driven by 
changes in environmental conditions that included increased 
temperatures and low soil moisture (IOP) and decreased 

incoming radiation as a result of nearby wildfire (Stress 
Events 2, 3, 4), all of which can influence photosynthetic 
activity (Figs. 2, 3). The IOP was the only stress event unaf-
fected by smoke, however, PM2.5 and PM10 were assigned 
relatively high predictor importance (Fig. 3b), which may 
be driven by a relatively minor increase that coincided 
strongly with GPP variation leading to enhanced importance 

Fig. 2  Five-day running means of daily noontime gross primary pro-
ductivity (GPP, a), air temperature (b), incoming radiation (c), 30 cm 
depth soil volumetric water content (solid line) and irrigation amount 
(dashed line) (d), particulate matter (PM) concentration (e), and dur-

ing the intensive observation period (IOP) stem water potential (solid 
line) with GPP (dashed line) (f) for four vineyard subplots located in 
California’s Central Valley. Stress events were defined based on GPP 
variation
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(Fig. 2e). In this study, we utilized tower-based optical-
remote sensing to continuously monitor vineyard optical 
response during the stress events, we evaluated the poten-
tial of structural- (i.e. NDVI) and physiological-based (i.e. 
PRI) vegetation indices to reflect plant responses to environ-
mental stress. Further, we applied detrending to disentangle 
short- and long-term variation of PRI to optimize detection 
of short-term stress events.

The structural- or greenness-based NDVI was unable 
to track the stress events (Fig. 4a), showing a slight (non-
dynamic) decrease throughout the growing season. This is 

likely due to small changes in canopy structure and biomass 
(e.g. loss of leaves, wilting), and greenness (chlorophyll 
degradation) over the course of the season, which are more 
severe symptoms from prolonged stress but also a common 
phenological trajectory observed in grapevines (Peñue-
las et al. 1994; Haboudane et al. 2002; Zarco-Tejada et al. 
2012). We did observe minor declines of NDVI between 
Stress Events 2 and 3 (Fig. 4b) that coincided with variations 
of incoming radiation and PM concentrations (Fig. 2c, e). 
This NDVI variation is potentially driven by smoke influ-
ence on radiation scatter or Rayleigh scattering, resulting 

Fig. 3  Random forest analysis of relative variable importance for 
explaining variation of daily noontime gross primary productiv-
ity (GPP) for the Full Observation Period (a), Intensive Observation 
Period (IOP, b), Stress 2 (c), Stress 3 (d), and Stress 4 (e). Stress 

events were defined based on GPP variation. Abbreviations: PM par-
ticulate matter; VPD vapor pressure deficit; VWC volumetric water 
content
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differential scattering of red wavelengths reflectance com-
pared to near-infrared (NIR) wavelengths affecting NDVI 
calculation (Jones and Vaughan 2010). Detrending NDVI 
yielded minimal improvements for capturing stress events as 
it represented less than 3% of the total variation during stress 
(Fig. 6b). Therefore, NDVI is likely limited for detecting 
short-term stress events given the very subtle stress response 
(Fig. 4a) and sky condition constraints.

In contrast to canopy structure, early stress responses are 
generally linked to more physiological mechanisms such 
as stomatal closure which limits water loss and photosyn-
thetic activity (Chaves et al. 2009). Given that the response 
of photosynthetic activity includes limitations by both sto-
matal closure and impairment to photosynthetic processes, 
ecosystem GPP itself may prove to be a robust indicator of 
stress across temporal scales (Flexas et al. 2004; Gambetta 
et al. 2020). Carotenoid pigments, specifically the xantho-
phyll cycle, are highly dynamic and involved in regulat-
ing photosynthetic activity and often used as an indicator 

of light-use efficiency and non-photochemical quenching 
(Demmig-Adams and Adams 1996). PRI may exploit these 
physiological responses to perform as a proxy of photo-
synthetic activity and thus an indicator of short-term stress 
events. However, PRI is sensitive to both short-term changes 
in xanthophyll cycle and long-term changes in carotenoid/
chlorophyll pigment pool (Garbulsky et al. 2011; Wong and 
Gamon 2015). Therefore, disentangling the short-term stress 
response and long-term seasonal response of PRI is needed 
to improve its performance (Hmimina et  al. 2015). We 
utilized detrending to isolate the short-term PRI response 
contributed by the xanthophyll cycle (Fig. 5) and highlight 
a parallel response between detrended GPP and detrended 
PRI (Fig. 6).

The detrended GPP and PRI relationships differed 
between the four stress events (Fig. 7). The differences in the 
relationships and coefficient of determination (R2) indicate 
a coupled stress response between GPP and PRI but there 
may be limitations in determining subplot differences in 

Fig. 4  Five-day running means 
of daily noontime normalized 
difference vegetation index 
(NDVI, a) and photochemical 
reflectance index (PRI, b) with 
gross primary productivity 
(GPP) for four vineyard subplots 
located in California’s Central 
Valley. Solid thin lines represent 
target specific measurements of 
PRI and NDVI, solid thick lines 
represent plot specific means 
of PRI and NDVI, and dashed 
lines represent plot specific 
GPP. Stress events were defined 
based on GPP variation
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magnitude or severity of stress response with PRI. In addi-
tion, out of the four stress events, the strongest GPP and PRI 
relationships were observed during the IOP and Stress Event 
2, which were driven largely by temperature (Figs. 3, 7). In 
contrast, Stress Event 4 exhibited a poor overall relationship. 
Environmental drivers predicting GPP variation was also 
poor during Stress Event 4 (Fig. 3e) potentially due to the 
cumulative variation from air temperature, incoming radia-
tion, VWC, irrigation, PM2.5, and PM10 (Fig. 2). Given that 
smoke likely reduced light for photosynthesis and also influ-
enced the optical signal (Miura et al. 1998), we speculate an 
increased signal noise that reduced the optical signal quality 
which influenced both PRI and the GPP–PRI relationships 
during periods where smoke was present. This likely led to 
the weaker R2 between GPP and PRI during Stress Event 
2 recovery and Stress Event 3 response compared to their 
respective responses and recoveries (Fig. 7c, d). The IOP 
was the only stress event completely unaffected by smoke 
and air quality conditions and showed generally high R2 
between GPP and PRI for the response and recovery ranging 
from 0.53 to 0.92, except for RIP3 recovery, which was 0.18 
(Fig. 7b). Given the relatively similar R2 between the IOP 
and Stress Events 2 and 3, and generally overlapping lines of 
best fit, we suspect that PRI may be effective at tracking the 
stress response and recovery of grapevine GPP with little to 
no hysteresis effect, but more data will be needed.

Our optical-based approach demonstrated the potential 
of detrended PRI as an indicator of vineyard stress response 

and recovery of GPP. For assessing the magnitude and sever-
ity of stress, PRI may be limited and requires further evalu-
ation as it was unable to reflect subplot specific magnitudes 
that GPP demonstrated during the IOP (Fig. 6), which was 
designed to apply an irrigation regime to the four subplots 
to induce different stress severity (Fig. 2). Further work may 
also include evaluating PRI as a proxy of light-use efficiency 
(Garbulsky et al. 2011) and to evaluate the impacts of solar 
and viewing angle on PRI (Hilker et al. 2008). Quantifying 
light-use efficiency and accounting for angular effects were 
beyond the scope of this paper as we utilized a diffuser to 
represent bi-hemispherical FOV for average canopy reflec-
tance, limiting high precision measurements and viewing 
angle assessment. However, the large variation between tar-
gets (Fig. 4b), alludes to an angular influence impacting the 
magnitude of the PRI signal, but not temporal variation—
even after limiting our data to solar noon (Fig. 1). In addition 
to optimizing PRI for stress quantification, there may be a 
complementary role for PRI with other remote sensing tech-
niques such as thermal-based remote sensing for improved 
quantification of stress response and severity. Thermal-based 
products like the crop water stress index (CWSI) (Prueger 
et al. 2019) or evapotranspiration (ET) (Maes and Steppe 
2012; Semmens et al. 2016; Knipper et al. 2019a; Anderson 
et al. 2021) track evaporative water loss. As thermal- and 
optical-based techniques are sensitive to different mecha-
nistic processes (e.g. stomatal closure and photosynthetic 
activity, respectively), they offer potential complementation 

Fig. 5  Example of data detrending with the photochemical reflec-
tance index (PRI) from RIP1 during the Intensive Observation Period 
(IOP). Left panel (a) shows raw PRI influenced by both short- (e.g. 
stress and xanthophyll cycle) and long-term signals (growth and 
pigment pools). By fitting a linear line through the data (black dot-

ted line), the data are detrended by removing the slope of this fitted 
line (red dotted line). Right panel (b) shows the results of detrending, 
which highlights the short-term stress response of PRI by reducing 
long-term PRI responses. Stress events for detrending were defined 
based on GPP variation
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for detecting and quantifying the severity of stress events 
(Panigada et al. 2014). Another physiological remote sens-
ing product, solar-induced fluorescence (SIF), represents 
physiological changes in absorbed light energy balance in 
relations to photosynthetic activity and excess energy dis-
sipation (Porcar-Castell et al. 2014). SIF has shown promise 
for tracking drought events from satellite (Sun et al. 2015; 
He et al. 2019). Potentially, by utilizing PRI and/or SIF as a 
proxy of photosynthetic activity with thermal-based ET, a 
water-use efficiency (WUE) product may be developed based 
on remote sensing for continuous large spatial coverage of 
vegetation.

From a water management/irrigation scheduling per-
spective, having near real-time information on vine water 
use and stress is critical as well as providing a forecast-
ing product to determine whether there is a likelihood for 
greater atmospheric demand the upcoming week. Irri-
gation is normally planned in weekly intervals, but for 

stress detection, daily information is ideal and so fusion of 
multiple satellite sources is likely to be required to obtain 
near real-time information. In applying the thermal-based 
data fusion technique for irrigation scheduling, Knipper 
et al. (2019b) concluded that the method could detect the 
rapid decline in vineyard ET at both daily and weekly time 
steps; but the response was delayed, due to latencies in the 
availability of key Landsat 8 products. Alternatively, with 
optical-remote sensing, daily products of PRI in the form 
of the similar chlorophyll/carotenoid index (CCI) may be 
available from MODIS but is currently limited to large 
spatial areas of 1 km (Gamon et al. 2016), hence the use 
of tower-based instrumentation in this study. With tower-
based instrumentation, low-cost PRI sensors may provide a 
cost-effective role as an indicator of stress events (Gamon 
et al. 2015). However, we note that post-processing steps, 
such as detrending, may be necessary to disentangle short- 
and long-term signals in the PRI for applied use.

Fig. 6  Detrended gross primary 
productivity (GPP, a), detrended 
normalized difference veg-
etation index (NDVI, b), and 
detrended photochemical reflec-
tance index (PRI, c) for each 
stress event representing % vari-
ation of total signal. Detrend-
ing reduces the influence of 
seasonal variation by removing 
linear trends between two dates 
representing the timing of the 
stress events. Grey dashed lines 
show the partitioning of stress 
and recovery periods. The dates 
of the stress events and stress/
recovery partitioning were 
determined based on the GPP 
data
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Conclusions

Our results offer an optical-remote sensing approach with 
PRI for monitoring vegetation stress response. Specifically 
for tracking short-term stress events, it is important to con-
sider disentangling the PRI signal to optimize the detec-
tion of short-term PRI dynamics driven by the xanthophyll 

cycle and stress events. This will minimize confounding 
seasonal pigment pool effects on PRI since it is influenced 
by both short- (daily) and long-term (seasonal) adjustments 
in carotenoid pigment composition (Gamon and Berry 2012; 
Wong and Gamon 2015). Given the potential of optical-
based remote sensing with high spatial and temporal cov-
erage, tower-based systems provide a unique opportunity 

Fig. 7  Relationships between 
daily noontime photochemical 
reflectance index (PRI) and 
gross primary productivity 
(GPP) across four vineyard 
subplots located in California’s 
Central Valley for periods: 
Full observation period (a); 
Intensive observation period 
(IOP, b); Stress 2 (c); Stress 3 
(d); Stress 4 (e). Black line for 
overall relationship across all 
subplots, solid line for stress 
and dashed line for recovery. 
Stress events were defined 
based on GPP variation. 
Significance codes: no asterisk 
p > 0.05; *p < 0.05; **p < 0.01; 
***p < 0.001
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to monitor sub daily information over seasonal periods, 
which should be further explored in detail for partitioning 
of short- and long-term vegetation dynamics. The ability to 
automate a monitoring system for both vegetation growth 
and stress response can benefit management and decision 
making, especially in regions with high irrigation manage-
ment demands.
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