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A B S T R A C T   

Carbon uptake and tree growth are important factors for assessing productivity and long-term carbon storage. 
Measurements of radial stem growth are mainly performed at the individual tree scale and can be used to infer 
ecosystem net primary productivity (NPP). However, these measurements are spatially limited, and remote 
sensing provides a promising tool to track vegetation function and productivity across spatial scales, making it a 
viable technique for assessing variation in interannual tree growth and carbon storage. In this study we examined 
the correspondence between in-situ annual tree-ring width across four dominant evergreen species in the Sierra 
Nevada and a wide range of remotely sensed products linked to carbon uptake including NPP, gross primary 
productivity (GPP), net photosynthesis (PSN), normalized difference vegetation index (NDVI), near infrared 
reflectance of vegetation index (NIRV), and chlorophyll/carotenoid index (CCI) from MODIS (Moderate resolu-
tion Imaging Spectroradiometer) as well as downscaled solar-induced fluorescence (SIF) products, using a 14 
year dataset (2000–2014) across 62 forest sites. We show that variation of annual tree-ring width was best 
captured by the annual sum of MODIS GPP, with a legacy effect (5-month backwards shift). Across all forest sites, 
MODIS GPP with a 5-month legacy effect showed moderate correspondence with tree-ring width (r = 0.60). 
Within each individual site, however, the interannual correspondence between MODIS GPP with a legacy effect 
and tree growth was stronger (median r = 0.70 vs 0.14 without a legacy effect). The importance of legacy effects 
in explaining tree growth variation within sites indicates that tree growth each year is influenced by carbon 
uptake during the latter part of the previous growing season. Additional local environmental factors also 
explained annual variation in tree-ring width, including (in descending order of importance) local tree density, 
latitude, slope, DBH, elevation and aspect.   

1. Introduction 

Carbon uptake and the allocation of resources to growth have 
important roles in the carbon cycle and are strongly influenced by 
climate variability (Babst et al., 2013; Messori et al., 2019). Quantifying 
net primary productivity (NPP) is a challenge as it incorporates both 
carbon uptake (net photosynthesis) and biomass growth including fo-
liage, wood and roots (Litton et al., 2007; Luyssaert et al., 2010). 
Furthermore, climate change exacerbates uncertainties regarding how 
ecosystem carbon uptake and sequestration may respond in the future 
(Le Quéré et al., 2009). On one hand, warming temperatures may in-
crease productivity and growth due to a longer growing season (Jeong 

et al., 2011) and improved photosynthetic efficiency (Myneni et al., 
1997; Nemani et al., 2003). On the other, increased frequency and 
severity of drought may negatively influence carbon uptake and tree 
growth (Buermann et al., 2018; Meehl and Tebaldi, 2004). Ultimately, 
climate change will have a substantial impact on tree productivity and 
growth, making it increasingly important to develop tools to monitor 
these changes across spatial and temporal scales (Babst et al., 2018). 

Tree-ring width corresponds strongly with tree growth, which is an 
important contributor to long term carbon storage of forests (Körner, 
2017; Litton et al., 2007; Luyssaert et al., 2010) and is strongly influ-
enced by climate (Babst et al., 2013; Dolanc et al., 2013; Fritts, 1966; 
Walker and Johnstone, 2014). Assessing tree-ring width is useful for 
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understanding historical climate-growth responses traditionally associ-
ated with temperature (Babst et al., 2018). However, recent trends show 
a reduction of sensitivity of tree ring widths to temperature, and instead 
annual growth may be limited by other factors such as the phenology of 
photosynthesis, water availability, nutrient availability, carbohydrate 
pools, soil frost, pathogens and herbivory (D’Arrigo et al., 2008). In 
addition, there may be carryover, or legacy, effects between years that 
can influence tree growth (Babst et al., 2014a). Thus when considering 
tree-ring width at the annual timescale, there may be a temporal sepa-
ration, or legacy effect, between climate and tree growth (Fritts, 1966). 
When a legacy effect is accounted for, the relationship between climate 
and tree growth can improve (Gough et al., 2008; Lagergren et al., 
2019). This is in part associated with storage of prior year resources that 
can be remobilized for growth in the following year (Royce and Barbour, 
2001). 

The annual variation of tree-ring width is important in the context of 
NPP, as wood biomass represents a large proportion of resource allo-
cation from the annual carbon budget (Litton et al., 2007; Luyssaert 
et al., 2010). However, acquiring tree-ring width data requires in situ 
collection of tree cores or dendrometry from individual trees. Therefore, 
there is a demand for using large-scale techniques to monitor the vari-
ation of annual tree-ring width (Babst et al., 2018). At the site scale, the 
eddy covariance technique enables the monitoring of ecosystem carbon 
fluxes, providing a powerful tool to monitor carbon exchange between 
the land and atmosphere (Baldocchi, 2003). Recent findings have linked 
tree-ring width estimated from tree cores and dendrometers with eddy 
covariance derived NPP showing promise for large scale monitoring of 
NPP and carbon storage (Babst et al., 2014b; Campioli et al., 2011; 
Granier et al., 2008; Ohtsuka et al., 2009; Zweifel et al., 2010). This 
successful linkage of carbon fluxes with tree growth suggests that large 
scale techniques that may track variation of carbon uptake also reflect 
variations of annual tree-ring width and thus NPP. 

Recent advances have highlighted the potential of satellite-based 
remote sensing for tracking variations of annual tree-ring width 
(Coulthard et al., 2017; Kaufmann et al., 2004; Vicente-Serrano et al., 
2016). However, it should be noted that there are temporal and spatial 
constraints of the remote sensing products, that may limit comparisons 
between remote sensing products and tree-ring width (Babst et al., 
2018), with the later having already established long-term tree ring 
databases like the International Tree-Ring Data Bank (ITRDB). Satellites 
such as Landsat 5, 7 and 8 contain combined datasets dating back to 
1984 with a 30 m spatial resolution, but is limited by poor temporal 
resolution (16 day revisit) that leads to potential data gaps due to cloud 
contamination (Wulder et al., 2008). In contrast, MODIS (Moderate 
Resolution Imaging Spectroradiometer), which was launched in 2000 
aboard the Aqua and Terra satellites, provides high temporal resolution 
(1–2 day revisit) with a 250+ m pixel size spatial resolution. While the 
spatial resolution of MODIS may be limiting, the high temporal resolu-
tion may better capture intra-annual dynamics while also being less 
susceptible to data gaps from cloud contamination. 

MODIS has been used to estimate global annual NPP, derived from 8- 
day MODIS estimates of gross primary productivity (GPP) and net 
photosynthesis (PSN). These products use a combination of remotely 
sensed vegetation indices to represent canopy ‘greenness’ and meteo-
rological data to constrain plant functional variability (Running et al., 
2004; Zhao et al., 2005). The MODIS NPP, GPP and PSN products 
therefore can be used to estimate ecosystem carbon uptake, which may 
correspond with variations in annual tree-ring width. A recent study by 
Levesque et al. (2019), demonstrated that satellite-derived NPP 
(including from MODIS) correlated with tree-ring isotopes, a proxy for 
reconstructing historical NPP. Given this result, satellite-based remote 
sensing may be suitable to track variations in tree growth at the 
ecosystem scale where trees experience similar conditions for parallel 
growth patterns. 

A traditional remotely sensed vegetation index for tracking forest 
growth, is the normalized difference vegetation index (NDVI) due to its 

sensitivity to canopy chlorophyll content (i.e. ‘greenness’) and use as a 
proxy of the fraction of absorbed photosynthetically active radiation and 
leaf area index (Carlson and Ripley, 1997; Myneni and Williams, 1994). 
Cumulative NDVI has been observed to correlate with interannual var-
iations of forest growth (Kaufmann et al., 2008; Vicente-Serrano et al., 
2016). However, this relationship between NDVI and forest growth may 
vary by vegetation type and temporal scale (Brehaut and Danby, 2018; 
Vicente-Serrano et al., 2020). This is especially important for evergreen 
conifer forests, since vegetation greenness and NDVI (a) have the po-
tential to saturate during the growing season and (b) often remain 
relatively high even during low productivity periods, decoupling NDVI 
from photosynthetic activity and carbon accumulation (Sims et al., 
2006; Walther et al., 2016). Therefore, we hypothesize that remotely 
sensed products more closely associated with carbon uptake may better 
respond to evergreen conifer forest growth than NDVI. 

Novel remote sensing products may have potential to overcome the 
limitations of NDVI for tracking evergreen conifer forest productivity. 
The near-infrared reflectance of vegetation index (NIRV), has been 
recently proposed to reduce saturation effects of NDVI and sensitivity to 
background conditions (soil and snow) by multiplying NDVI with near- 
infrared reflectance, showing close correspondence to ecosystem GPP at 
large spatiotemporal scales (Badgley et al., 2017). The performance of 
NIRV requires further validation in evergreen conifer forests, although 
recent studies have demonstrated its promise (Badgley et al., 2019; 
Wong et al., 2020). A physiology-based vegetation index was recently 
described as the chlorophyll/carotenoid index (CCI), which is sensitive 
to foliar pigment dynamics that are associated with photosynthetic ac-
tivity (Gamon et al., 2016). In evergreen conifer forests, CCI has been 
shown to track seasonal dynamics of photosynthesis (Wong et al., 2020, 
2019) with further support from its analog, the photochemical reflec-
tance index (PRI) (Garbulsky et al., 2011; Zhang et al., 2016). 

Another physiological approach to track the seasonal variation of 
photosynthesis from satellites is solar-induced fluorescence (SIF) 
(Frankenberg et al., 2011; Joiner et al., 2011). SIF represents chloro-
phyll fluorescence emission, which is associated with changes in 
photosynthetic activity (Porcar-Castell et al., 2014). Strong relationships 
between SIF and carbon uptake has been observed in evergreen conifer 
forests (Magney et al., 2019; Walther et al., 2016). However, a current 
limitation of satellite-based SIF is the poor spatial resolution (40+ km 
pixel size), which would lead to severe spatial scale mismatch with site- 
specific dynamics and tree-ring width comparisons. Recent advances 
have sought to enhance the spatial resolution of SIF by introducing 
downscaled SIF products with finer spatial resolutions (~5.5 km pixel 
size) derived from fusing SIF with additional products from different 
remote sensing platforms (Duveiller et al., 2020; Wen et al., 2020; Zhang 
et al., 2018). Therefore, we aim to explore the potential of downscaled 
SIF products for assessing annual variation of carbon uptake in relation 
to tree-ring width. 

In this study, we evaluated the relationships between annual tree- 
ring width with remotely sensed MODIS products (NPP, GPP, PSN, 
NDVI, NIRV and CCI) and downscaled SIF products (CSIF, GOME-2 and 
SCIAMACHY) across four dominant evergreen conifer species in the 
Sierra Nevada, spanning 62 sites across a wide range of topographic and 
environmental conditions. Our primary objectives were to: 1) explore 
the relationships between tree-ring width and satellite-based products 
associated with carbon uptake; 2) evaluate a potential legacy effect on 
these relationships; and 3) characterize the influence of site-specific 
environmental factors on these relationships across sites. 

2. Methods 

2.1. Study sites 

Sampling sites were identified by driving and hiking along roads and 
trails along an elevational gradient at each of the four focal latitudes 
(Fig. 1) and identifying relatively homogeneous stands in which 
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Douglas-fir (P. menziesii) was dominant or co-dominant. We sought to 
identify sites ranging from the upper and lower elevational limits of the 
distribution of Douglas-fir. Where possible, we sampled a site with a 
generally north-facing aspect and a site with a generally south-facing 
aspect at each elevation. Within each sampled site, we identified a 
random point near the center of the relatively homogeneous area to 
identify the site location. For each site, topographic information 
including slope, aspect and elevation were recorded. We avoided areas 
with clear evidence of moderate- to high-severity wildfire or prescribed 
fire during the growth period analyzed. 

2.2. Tree rings/radial growth 

Tree growth data was obtained from 794 individual trees across 63 
sites in the Sierra Nevada (Fig. 1). Tree diameter at breast height (DBH) 
measured with metal DBH tapes and tree cores (one per tree) collected 
with a 4.3 mm-diameter increment borer were sampled in mid- to late 
summer in 2013 and 2014. From each site, tree measurements were 
obtained from 3 to 27 individual trees within a roughly 2000 to 4000 m2 

area (Fig. S1). We limited analysis to sites with ≥5 trees sampled 
resulting in 62 sites in the analysis with a mean of 12.3 trees per site (5.3 
standard deviation). 

We sampled all co-dominant conifer species. The primary species 
were P. menziesii, followed by P. ponderosa, A. concolor, and 
P. lambertiana, which were spatially interspersed within each site. For 
the least abundant co-dominant species, we sampled the canopy domi-
nant or co-dominant (height at least 67% of the height of neighboring 
trees) individuals with DBH >20 cm that were most accessible from 
(generally, closest to) the site center point. We then sampled the closest 
individual of each other co-dominant species to each of the sampled 
trees of the least abundant co-dominant species. This was to ensure 
interspersion of species sampled across the site. Only trees with DBH 
>20 cm were sampled, and 95% of sampled trees had DBH >30 cm. 

There was no minimum stand density for sampling and most stands were 
not closed-canopy (consistent with most mixed-conifer stands in the 
Sierra Nevada); we captured an approximation of stand density by 
computing Voronoi polygon area around each sampled tree (see Section 
2.4). Some stands, especially those on south-facing slopes near the lower 
elevational limit along each transect, contained shrubby understory 
and/or exposed bedrock. Despite the large spatial range of tree-core 
measurements at each site, we assume that interannual variability in 
tree growth is representative of the forest captured within a satellite 
pixel. 

At each site, we collected increment cores from canopy dominant or 
co-dominant individuals stratified across all species. Tree cores were 
collected from 1.3 m height on the slope side of the tree – the same 
location used for measuring DBH. After collection and drying, we 
mounted cores into grooved aluminum blocks, sanded them, and scan-
ned them at 1200 dots per inch (DPI). We measured tree rings in scanned 
images using CooRecorder v9.01 (Cybis Dendrochronology AB, Sweden) 
and then performed visual crossdating using CooRecorder and its com-
panion software CDendro following standard crossdating methods 
(Speer, 2010). We excluded cores and sections of cores that could not be 
confidently crossdated (e.g., due to growth aberrations such as knots or 
multiple ambiguous ring boundary decisions that produced similar 
alignment with the reference chronology). Out of 794 cored trees, 29 
were dropped entirely due to uncertain crossdating, yielding 765 cores 
that contributed to the analysis prior to excluding the site with <5 cored 
trees (now n = 62). Ring width data were not present for every year in 
the analysis period (2000 to 2013) for every core (e.g., outer rings broke 
off on some cores; inner rings were dropped on some due to rot, aber-
rations such as branches, or uncertain crossdating); the total number of 
rings analyzed each year was less than 762; it ranged between 533 and 
725 (Table S1). Ring width records date from 1956 to 2014. Most trees 
had annual rings from prior to 1956 but we arbitrarily truncated mea-
surement and crossdating at this year. 

Fig. 1. The location of each evergreen conifer forest site in the Sierra Nevada, California (a) where tree cores were collected and satellite pixels selected (n = 63). 
Insets represent the north cluster (b) and south cluster (c). 

C.Y.S. Wong et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 265 (2021) 112635

4

2.3. Climate data 

We obtained annual weather and historical climate normal 
(1981–2010 mean) data by extracting and summarizing values from the 
4 km resolution PRISM dataset (PRISM Climate Group, 2014) for pre-
cipitation and the 800 m resolution TopoWx dataset (Oyler et al., 2015) 
for temperature. For each site, we extracted minimum monthly tem-
perature, maximum monthly temperature, and total monthly precipi-
tation values from the raster data files using bilinear interpolation. We 
then computed total annual precipitation for each water year (October 
to September) by summing monthly values, and we computed mean 
annual temperature for each water year by averaging across monthly 
values (including averaging minimum and maximum temperature). We 
computed historical climate normals for temperature and precipitation 
by calculating the mean value across water years ending in 1981 
through 2010. To provide an indicator of drought severity via accu-
mulated water excess or deficit, we used the 4 km pixel Palmer drought 
severity index (PDSI) from the WestWide Drought Tracker (Abatzoglou 
et al., 2017) where values range from − 4 to 4 to represent severity 
where negative is drought, zero is normal and positive is excess water 
conditions. Daylength was obtained for each site location from the 
Daymet V3 dataset (Thornton et al., 2016) retrieved using Google Earth 
Engine. 

2.4. Estimating local density from Voronoi polygons 

We estimated the area of Voronoi polygons (Kenkel, 1991) sur-
rounding each cored tree as an index of growing space, local density, or 
competition potentially experienced by each tree (Goodwin et al., 
2020). Voronoi polygons are created by drawing lines between the focal 
tree and each of its neighbors, such that each line bisects, and is 
perpendicular to, the line between the focal tree and its neighbor. The 
polygon at the interior of these intersecting lines represents the Voronoi 
polygon (Fig. S2). We only considered trees with a DBH at least half that 
of the focal tree as potentially contributing to the Voronoi polygon. 
Trees contributing to the polygon were mapped in the field (by 
recording their compass azimuth and distance relative to the focal tree) 
to calculate the Voronoi polygon area. 

2.5. MODIS data 

The MODIS NPP, GPP, PSN, NDVI and NIRV datasets used in this 
study were obtained from each of the 62 sites using Google Earth Engine 
to retrieve MODIS data from 2000 to 2014. Annual NPP was acquired 
from the MOD17A3HGF (V6) collection with a 500 m pixel size. GPP and 
PSN were acquired from the MOD17A2H (V6) collection consisting of a 
cumulative 8-day composite with 500 m pixel size. NDVI and NIRV were 
estimated from the MOD09GQ (V6) collection consisting of daily surface 
spectral reflectance with a 250 m pixel size and screened for cloud cover 
using quality flags from the 500 m MOD09GA (V6) collection (Vermote 
and Wolfe, 2015). We also used the MOD10A1 (V6) normalized differ-
ence snow index (NDSI) product obtained via Google Earth Engine to 
further screen the reflectance data (Hall and Riggs, 2016). For all MODIS 
vegetation products, dates with NDSI values greater than zero were 
filtered out (Fig. S3). NDVI and NIRV were calculated using bands 1 
(620–670 nm) and 2 (841–876 nm) as: 

NDVI =
B2 − B1
B2 + B1

(1)  

NIRV =
B2 − B1
B2 + B1

×B2 (2) 

The chlorophyll/carotenoid index (CCI) was calculated from the 
daily MCD19A1 (V6) MODIS Terra and Aqua combined Multi-Angle 
Implementation of Atmospheric Correction Land Surface Bidirectional 
Reflectance Factor gridded Level 2 product (Lyapustin and Wang, 2018). 

The 1 km pixel resolution was filtered using quality assessment flags for 
high quality, cloud and snow free days. Wintertime CCI was sensitive to 
snow (Fig. S4), therefore we filtered the data using the NDSI where 
values were greater than zero. CCI was calculated using bands 1 
(620–670 nm) and 11 (526–536 nm) as: 

CCI =
B11 − B1
B11 + B1

(3) 

The MODIS GPP, PSN, NDVI, NIRV and CCI products were averaged 
monthly and summed annually. To explore the legacy effect, we applied 
backward monthly shifts ranging from 0 to 12 months for determining 
the annual sum. For site-specific snow cover, NDSI was used to deter-
mine day of year for snow on and snow off, and snow length (number of 
days with potential snow cover between snow on and snow off). Snow on 
was determined as the first day of snow when NDSI was >0. Snow off 
was determined as the first day where NDSI equaled zero for 20 
consecutive days. 

2.6. Solar-induced fluorescence products 

Three downscaled SIF products (0.05◦ or ~ 5.5 km resolution) were 
obtained for the 62 sites. The clear-sky instantaneous contiguous SIF 
(CSIF) dataset, which used SIF from Orbiting Carbon Observatory-2 
(OCO-2) combined with surface reflectance from MODIS to generate a 
4 day resolution downscaled SIF product from 2000 to 2017 (Zhang 
et al., 2018). The GOME-2 downscaled SIF dataset is based on Global 
Ozone Monitoring Experiment 2 (GOME-2) SIF using explanatory vari-
ables from MODIS to generate a 8 day resolution downscaled SIF 
product from 2007 to 2018 (Duveiller et al., 2020). The SCIAMACHY SIF 
v2.2 dataset is based on the fusion of SIF retrievals from Scanning Im-
aging Absorption spectrometer for Atmospheric CHartographY (SCIA-
MACHY) and GOME-2 for a monthly resolution downscaled SIF product 
from 2002 to 2018 (Wen et al., 2020). Like the MODIS products, the 
downscaled SIF products were monthly averages and summed annually, 
while applying a backward monthly shift ranging from 0 to 12 months 
for determining the annual sum to explore the legacy effect. 

2.7. Data analysis 

Pearson correlation tests were conducted between the remotely 
sensed products and annual tree-ring width across years for each site 
individually to assess the relative correlation coefficients (r) and slopes 
across sites. Prior to determining the slopes, annual tree-ring width and 
the remotely sensed products were scaled 0 to 1 for comparisons of 
slopes. 

To explore the interacting relationships between annual tree-ring 
width, annual remotely sensed products and site-specific climate and 
geographic characteristics, we used R (R Development Core Team, 
2020) to perform a principal component analysis (PCA). To explore the 
importance of each remotely sensed product, species identity of the 
cored tree (i.e., P. menziesii, P. ponderosa, A. concolor, and 
P. lambertiana), site-specific climate and topography in relation to the 
variation of annual tree-ring width, we used Random Forest analysis 
using the ’Boruta’ package to run iterations until all parameters were 
stabilized with a maximum iteration of 2000 times to determine variable 
importance via the mean decrease accuracy measure (Breiman, 2001). 

3. Results 

Fig. 2 summarizes the individual site and median of the variation of 
annual tree-ring width, mean annual temperature, total annual precip-
itation, PDSI, and the annual sums of the MODIS and downscaled SIF 
products (for monthly timeseries see Fig. S3). The variation of annual 
tree-ring width highlights years with larger annual tree-ring width in 
2005, 2006, 2010, 2011 and 2012 (Fig. 2a). These years align with 
periods of lower mean annual temperature, higher total annual 
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precipitation and abundant soil water via PDSI (Fig. 2b, c, d). For the 
satellite products, NPP, GPP and PSN showed pronounced annual vari-
ability, while NDVI, NIRV, CCI and SIF were relatively stable across all 
years (Fig. 2e–l). 

Across all site and years, there was no relationship between MODIS 
NPP and annual tree-ring width (Fig. 3). The other satellite products 
showed slightly higher correlations (0.28 to 0.48) with annual tree-ring 
width based on calendar year from January to December (zero-month 
shift) (Fig.S5). Exploring the legacy effect by applying a monthly 
backwards shift for the annual sum revealed an optimal shift of 5- 
months (August to July) for GPP and PSN, which was consistent 
across most sites (Fig. 4a, S6) that led to a near three-fold increase in the 
correlation coefficients (Fig. 4b). The other products (NDVI, NIRV, CCI 
and SIF) did not show a clear optimal shift across sites (Fig. 4a, S6), 
although a shift of 6 to 7 months showed a near two-fold increase in the 
median correlation coefficient (Fig. 4b). Density plots revealed that the 
site-specific range of correlation coefficients were highest for GPP and 
PSN with density peaks near 0.75 for GPP and 0.70 for PSN (Fig. 4c). In 
contrast, the other products showed higher distribution and lower 
density peaks ranging located from 0.2 to 0.6 (Fig. 4c). The density 
range of slopes across sites showed distribution peaks for GPP and PSN, 
while the remaining satellite products were broadly distributed 
(Fig. 4d). 

Applying a 5-month shift legacy effect on the satellite products, the 
individual site relationships with annual tree-ring width were mostly 
positive (Fig. 5). When considering the overall relationships across all 
sites and years, the GPP and annual tree-ring width relationship was 
nonlinear with larger site-specific slopes and variability in high annual 
tree-ring width sites than in low annual tree-ring width sites (Fig. 5a). In 
contrast, the PSN and annual tree-ring width relationships were highly 
scattered and had a weak overall relationship (Fig. 5b). Both annual 
tree-ring width and NDVI and NIRV relationships showed a weaker 
overall relationship compared to the annual tree-ring width and GPP 
relationship (Fig. 5c, d). There was a poor relationship between CCI and 
annual tree-ring width (Fig. 5e). The annual tree-ring width and SIF 
relationships were generally poor with correlation coefficients ranging 
from 0.24 to 0.38 (Fig. 5f–h). 

The PCA biplot revealed the relative correlations between site- 
specific climate and geographic characteristics and satellite products 
(Fig. 6a). A group of variables including all satellite products, DBH and 
latitude were located near tree-ring width (Fig. 6a). Slightly beyond this 
group, were precipitation and temperature. To further explore the 
importance of the explanatory parameters f on the variation of annual 
tree-ring width, we constructed a Random Forest analysis using all sites 
and years from 2001 to 2012 with 5-month backwards shifted satellite 
products (Fig. 6b). The Random Forest model consisting of site-specific 

Fig. 2. Boxplot of annual tree-ring width (a), mean annual temperature (b), total annual precipitation (c), mean annual PDSI (d), and annual sums of GPP and 
median NPP (red diamond) (e), PSN (f), NDVI (g) NIRV (h), normalized CCI (i), SIF CSIF (j), SIF GOME-2 (k) and SIF SCIAMACHY (l). Boxplots represent median, 
25th and 75th percentile and interquartile range. Points and colour represent each site (n = 62) and red diamond in (e) represents annual median NPP across all sites. 
For monthly timeseries of satellite products (e-l), see Fig. S3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

C.Y.S. Wong et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 265 (2021) 112635

6

climate, topography and satellite products explained 63% of the varia-
tion of annual tree-ring width. The most important explanatory pa-
rameters for the variation of annual tree-ring width were GPP and 
species identity of the sampled tree cores, followed by a grouping of 
NDVI, local density, NIRV, and CCI in that order. The remaining pa-
rameters had importance’s of <10% with the weakest predictor being 
daylength. A second Random Forest model was constructed using only 
satellite products further highlighting predictor importance (Fig. 6c). 
Comparing observed and predicted annual tree-ring width from the 
Random Forest models shows good model performance when all vari-
ables are considered including site characteristics and satellite products 
(r = 0.83) compared to only satellite products (r = 0.38) (Fig. 6d). 

4. Discussion 

In this study, we explored the relationships between annual tree-ring 
width with annual sums of satellite products to represent carbon uptake 
across 62 evergreen conifer sites in the Sierra Nevada. We found that 
when a legacy effect is considered (5-month backward shift), the rela-
tionship generally improved between tree-ring width and all satellite 
products. The greatest improvement was for GPP and PSN with a near 
three-fold increase in the correlation coefficient (r = 0.70 across all sites 
(Fig. 4b), with the majority of within site variation ranging from r = 0.60 
to 0.80). By accounting for this legacy effect on annual carbon uptake, 
we found that some remotely sensed products of carbon uptake can 
reveal interannual variation of tree-ring width of evergreen conifers in 
the Sierra Nevada, but that challenges with newer remote sensing 
indices such as NIRv, CCI, and downscaled SIF persist. 

4.1. Satellite estimation of the interannual variation in tree-ring width 

Annual tree-ring width varied across both sites and years, which 
aligned with annual variations in temperature and precipitation (Fig. 2). 
Using tree-ring width as a ground-based indicator for NPP (Zweifel et al., 
2010), we showed that satellite-based NPP, as well as other satellite 

products as indicators of annual carbon uptake, were unable to resolve 
interannual variation of tree-ring width (Figs. 3, 4, S5). Further explo-
ration revealed a legacy effect for the satellite products and their re-
lationships with annual tree-ring width (Fig. 4b). Legacy effects from the 
prior year can impact tree growth in following years (Anderegg et al., 
2015; Scharnweber et al., 2020). This can lead to a mismatch in timing 
between annual carbon uptake and resource allocation for growth 
(Gough et al., 2008). Lagergren et al. (2019) report a legacy effect of a 
6–9 months backward shift of carbon uptake in conifers to improve the 
relationship between annual carbon uptake and annual tree-ring width. 
For our sites, we identify that a 5-month shift was optimal for GPP and 
PSN, while it ranged from 6 to 7 months for the remaining products 
(Fig. 4b, S7). The timing of this shift indicates that carbon uptake during 
the prior autumn season and subsequent spring season contributes to 
annual tree-ring width the following year. For GPP and PSN, the 5- 
month shift aligns annual carbon uptake closer to the water year in 
California, which by convention begins in October (Davis et al., 2016; 
Flint et al., 2013). This coupling between carbon uptake and water year 
with annual tree-ring width suggests that water availability, represented 
by precipitation and PDSI (Fig. 2c, d), is a main limitation for tree 
growth at our sites, which is common in mountain ecosystems (Dolanc 
et al., 2013; Littell et al., 2008). Additionally, this timing of carbon 
uptake and resource availability may reflect the storage of nonstructural 
carbohydrates during the autumn that can support spring growth 
resumption (Kozlowski, 1992; Richardson et al., 2013; Tixier et al., 
2019). 

The 5-month shift strengthened the GPP and PSN relationships with 
tree-ring width the most, with a nearly three-fold increase in the cor-
relation coefficient (vs. two-fold for NDVI, NIRV, CCI and SIF) (Fig. 4b). 
The site level performance of the satellite products revealed that GPP 
and PSN are considerably better than NDVI, NIRV, CCI and SIF for 
assessing annual tree-ring width based on the range of the correlation 
coefficients and the higher slope (i.e., greater sensitivity) (Fig. 4c, d). 
Our results differed from Vicente-Serrano et al. (2020, 2016), who found 
good correlations between cumulative NDVI and tree-ring growth across 
evergreen and deciduous forests. Vicente-Serrano et al. (2020) reported 
relatively low mean NDVI ranging from 0.23 to 0.46, which suggests a 
potentially large annual dynamic range in foliar greenness. Therefore, 
we suspect that potential saturation, narrower dynamic range and large 
site-to-site variation of NDVI, also observed in NIRV, in our sites 
(Fig. S3c, d) are likely tracking variation in canopy structure like leaf 
area index (Carlson and Ripley, 1997). This will influence the relation-
ship between tree growth and NDVI, such that NDVI is less sensitive to 
actual carbon uptake - especially in evergreen conifers which retain their 
needles year-round (Gamon et al., 1995; Sims et al., 2006; Walther et al., 
2016). This can lead to variation in the tree growth and NDVI re-
lationships observed in mountainous ecosystems (Brehaut and Danby, 
2018). NIRV performed similarly to NDVI for assessing annual tree-ring 
width (Fig. 4). Part of this may be due to the sensitivity of NDVI and 
NIRV to snow cover, which resulted in wintertime data being filtered 
(Fig. S3c, d), but also suggests that ancillary information on environ-
mental conditions (as in the MODIS GPP, PSN products) is necessary. 
The lack of seasonality of NDVI and NIRV (Fig. S3c, d) also likely limited 
the impact of applying a legacy effect as the median correlation coeffi-
cient remained relatively similar across all month shifts (Fig. 4b). 
Further, there is likely decoupling between NIRV and carbon uptake at 
the beginning and end of the photosynthetically active season (Wang 
et al., 2020). 

The physiology-sensitive satellite products, CCI and SIF, also showed 
poor relationships with annual tree-ring width even with the consider-
ation of a legacy effect (Figs. 4, 5). This was surprising as CCI and SIF 
generally perform well at tracking annual variations of GPP in evergreen 
conifer forests (Gamon et al., 2016; Walther et al., 2016). We suspect 
part of this may be due to spatial scale mismatch as CCI (1 km pixel) and 
the downscaled SIF products (~5.5 km pixel) were much larger than 
GPP (500 m). In addition, we note that CCI was influenced by snow 

Fig. 3. No relationship between annual tree-ring width and MODIS NPP. Col-
oured symbols represent site year data and coloured lines represent site-specific 
relationships. The black line represents overall relationship of all sites and years 
with the Pearson correlation coefficient (r). p-value: ns, p > 0.05; *, p < 0.05; 
**, p < 0.01; *** p < 0.001. 
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cover represented by NDSI resulting in winter months (Nov to Apr) 
being filtered out from the annual cumulative sums (Fig. S4). These 
limitations, as well as the large topographic variation within a 1–5 km 
satellite pixel in the Sierra Nevada, likely severely impacted the CCI and 
downscaled SIF products and their relationships with annual tree-ring 
width. 

The GPP and PSN products incorporate parameters derived from 
satellite-based NDVI and climate data including temperature and vapor 
pressure deficit to account for variation in photosynthetic light-use ef-
ficiency (Running et al., 2004). This ultimately leads to a more robust 

GPP and PSN product for tracking annual carbon uptake compared to 
NDVI and NIRV on their own, indicated by the differences in their re-
lationships with annual tree-ring width (Fig. 4). Comparing the tree-ring 
width relationships with GPP and PSN revealed that GPP displayed an 
overall nonlinear pattern across all sites and years, whereas PSN was 
more linear and had a lower Pearson correlation coefficient (Fig. 5). This 
indicates that while PSN reflects local variation in annual tree-ring 
width, it is unable to resolve these trends across sites. PSN in-
corporates modeled leaf and root maintenance respiration using lookup 
tables for modeled temperature and biome properties (Running and 

Fig. 4. Density of sites for maximum correlation coefficient 
across different legacy effects based on backwards shifts from 
0 to 12 months (a). Median Pearson correlation coefficients of 
all sites (n = 62) between annual tree-ring width and annual 
sum of GPP, NPP, NDVI, NIRV, normalized CCI, SIF CSIF, SIF 
GOME-2 and SIF SCIAMACHY across different legacy effects 
(b). Shaded regions indicate standard deviation. Dashed line 
highlights the optimum 5-month backward shift for GPP and 
PSN. Density plots of Pearson correlation coefficients (c) and 
slopes (d) between annual tree-ring width and 5-month back-
ward shift normalized satellite products from all sites.   
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Zhao, 2015). This approach may further reduce sensitivity of the PSN 
product to local site-specific differences driven by environmental con-
ditions (Neumann et al., 2015; Turner et al., 2006, 2005). In contrast, 
the GPP product represents gross carbon uptake, exclusive of respira-
tion, leading to a simpler product that correlates better with annual tree- 
ring width both within and across sites. This result corresponds with 
eddy covariance based GPP estimates for tracking variation of annual 
tree-ring width (Babst et al., 2014b; Lagergren et al., 2019). The 
satellite-based GPP results imply that interannual variations of carbon 
uptake correlate with variations of tree-ring width, due to the syn-
chronous response of carbon uptake resource allocation towards wood 
growth (ie. aboveground NPP). 

4.2. Site-specific performance 

Across the 62 sites used in our analysis, there were site-specific dif-
ferences in the performance of satellite products for reflecting interan-
nual variation of tree-ring width. GPP and PSN showed most sites had 
optimal positive relationships with tree-ring width at 5-months (Fig. 4a), 
although about 2 and 4 sites, respectively, showed negative correlations 
indicating a poor relationship at the respective sites (Fig. S6). In contrast 
the other products (NDVI, NIRV, CCI, and SIF) did not have a distinct 
optimal shift and instead were uniform across many potential month 
shifts with >8 sites with negative correlations. This is notable as the 
range of correlation coefficients and slopes was large and did not 
converge (Fig. 4c, d). Part of this may be driven by the large site-specific 
variation and range as seen in NDVI, NIRV and CCI suggesting an effect 
of canopy structure or density (Fig. S3). In contrast, the site-specific 
variation of GPP, PSN and the SIF products were more uniform in range. 

Random forest modeling found that predictions of tree-ring width 
were substantially improved when site-specific biotic and topographic 
parameters such as species identity, local density, latitude, slope, 
elevation and aspect were included (Fig. 6d). Satellite products alone 
may reflect interannual variation of relative change (ring-width index vs 
Z-scores, see Fig. S8). This decoupling of tree-ring growth from the flux- 
related parameters estimated by satellite products may indicate that 
carbon partitioning to wood growth depends on local factors such as 
resource availability, stand age and stress tolerance, as predicted by 
optimal partitioning theory (Litton et al., 2007; Poorter et al., 2015, 
2012; Puglielli et al., 2020; Shipley and Meziane, 2002). While GPP may 
track variation of annual tree-ring width, for predictive capabilities, 
other site-specific information is needed. 

4.3. Limitations 

We note that there is a mismatch in spatial scale between tree cores 
taken from individual trees and satellite pixels, which subsume wide 
variation among individual trees (Fig. S1). To better match the satellite 
pixels, we averaged all trees within each 3000 m2 site and assume these 
trees are representative of the local region. To better address the spatial 
scale mismatch, future studies should seek to increase sample size of tree 
cores across larger spatial areas or investigate this relationship at a 
smaller spatial scale with proximal sensors. The products with the 
largest pixels, CCI and SIF, did not perform well in our study, which is 
likely attributable to the spatial scale mismatch, as these products are 
only currently available at 1 km and ~ 5.5 km pixels, respectively. We 
hypothesize that finer resolution products may yield better success in 
tracking species- and site-specific carbon uptake dynamics for reflecting 
the variation of annual tree-ring width, as canopy-scale photochemical 
reflectance index (PRI; analogous to CCI) has shown promise for 
tracking daily radial growth of evergreen conifers (Eitel et al., 2020). 

Further improvements to our understanding of how radial growth 
depends on the interaction of carbon uptake and environmental factors 
could advance tree growth models and ultimately improve quantifica-
tion of long-term aboveground carbon storage (Babst et al., 2018; 
Voelker, 2011). We note that while we included climate in our analysis, 
there is also a mismatch between tree cores and climate information 
such as temperature and PDSI (4 km) and precipitation (800 m). Local 
meteorological stations would better represent site-specific differences 
in climate. Site history was not considered fully in our site selection 
process as fully documenting management and disturbance history 
would be infeasible given the many jurisdictions and recordkeeping 
systems involved. Our intent in site selection was to capture a repre-
sentative sample of disturbance histories, including thinning and pre-
scribed fires, and it is one of the reasons we chose to sample many 
smaller sites as opposed to fewer larger sites. We did however avoid 
areas with clear evidence of recent moderate- to high-severity fires. We 
recognize that the comparison between environmental conditions and 
tree growth will be tree-age dependent, but in principle this should not 

Fig. 5. Relationship between annual tree-ring width and 5-month backward 
shift of annual MODIS GPP (a), PSN (b), NDVI (c), NIRV (d), CCI (e), SIF CSIF 
(f), SIF GOME-2 (g), and SIF SCIAMACHY (h). Coloured symbols represent site 
year data and coloured lines represent site-specific relationships. The black line 
represents overall relationship of all sites and years with the Pearson correlation 
coefficient (r). See Fig. S5 for relationships without the legacy effect. p-value: 
ns, p > 0.05; *, p < 0.05; **, p < 0.01; *** p < 0.001. 
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impact the reliability of the relationship between a remote sensing 
derived product and tree-ring growth in a given year. Nonetheless, to 
adequately link climate conditions with tree-ring growth, future studies 
need to consider how species-specific growth patterns and age-related 
growth decline influence the link between carbon uptake and annual 
tree-ring growth (Babst et al., 2013), as species identity is important in 
our Random Forest model (Fig. 6b). To explore interannual trends in-
dependent of species identity, we also scaled tree-ring width and the 
satellite products using tree width index and z-scores, respectively, 
which revealed similar Pearson correlation coefficients with unscaled 
data (Figs. S8, 5). Therefore, for evaluating interannual trends in forest 
growth, data scaling may be required across larger geographical ranges 
and across species. 

Standard remote sensing carbon uptake products (eg. GPP and PSN) 
have inherent limitations as well, leading to generally poor performance 
for detecting species- and site-specific responses (Turner et al., 2006, 
2005). This is due to how these products account for photosynthetic 
efficiency by utilizing biome-specific lookup tables (Ruimy et al., 1994; 
Running et al., 2004). Physiological-based products such as CCI and SIF 
may address this gap by providing site-specific information of light 

harvesting and photoprotective mechanisms as proxies of photosyn-
thetic activity (Gamon et al., 2016; Magney et al., 2019). Therefore, as 
CCI and SIF products become more readily available and at improved 
spatial and temporal resolutions, we suggest re-evaluating cumulative 
sums of CCI and SIF with the legacy effect for reflecting interannual 
variations of tree-ring growth and aboveground NPP. 

5. Conclusions 

We demonstrated that satellite-based GPP with a legacy effect 
correlated well with variations in annual tree-ring width, both within 
and across geographically diverse sites in the Sierra Nevada. The legacy 
effect may reflect a misalignment of the timing of resource gain with 
resource use; i.e., the use of carbon stores accumulated in one year for 
growth in the subsequent year (Lagergren et al., 2019). The dynamics of 
carbon uptake and tree growth in evergreen species may be conserved 
across other evergreen species in different regions as carbon uptake is 
often limited by water availability, light availability and temperature 
(Andreu et al., 2007; Fritts, 1966). This suggests a broader potential for 
satellite-based detection of the variation of annual tree-ring width. 

Fig. 6. Principal components analysis of annual data from 62 sites between 2001 and 2012 (a). Variable importance for predicting annual tree-ring width from 2001 
to 2012 using Random Forests with 63% explained variation, characterized by percent increase in mean square error where a higher value indicates that a variable is 
more important to the classification (b) and a Random Forest model using only remotely sensed data (c). Bars represent the iteration median, minimum and 
maximum range of variable importance. MODIS products include the 5-month backwards shift. Relationship between predicted and observed tree-ring width from 
the Random Forest models, using only satellite products (RS, red line and symbols) or all variables (ALL, black line and symbols) (d) with the Pearson correlation 
coefficients (r). p-value: ns, p > 0.05; *, p < 0.05; **, p < 0.01; *** p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Therefore, the annual carbon uptake and tree-ring width relationships 
along with the timing of a legacy effect should be validated in other 
systems, which has already shown promise in a broader context with 
NDVI (Vicente-Serrano et al., 2016). The relationship between annual 
tree-ring width and satellite products associated with carbon uptake 
suggest a promising large-scale tool for tracking evergreen conifer 
annual tree-ring width variation, an indicator of NPP, to better under-
stand the fate of carbon as climate change will impact the carbon 
sequestration of forests. 
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Zhang, C., Filella, I., Garbulsky, M., Peñuelas, J., 2016. Affecting factors and recent 
improvements of the photochemical reflectance index (PRI) for remotely sensing 
foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens. 8, 677. 

Zhang, Y., Joiner, J., Alemohammad, S.H., Zhou, S., Gentine, P., 2018. A global spatially 
contiguous solar-induced fluorescence (CSIF) dataset using neural networks. 
Biogeosciences 15, 5779–5800. https://doi.org/10.5194/bg-15-5779-2018. 

Zhao, M., Heinsch, F.A., Nemani, R.R., Running, S.W., 2005. Improvements of the 
MODIS terrestrial gross and net primary production global data set. Remote Sens. 
Environ. 95, 164–176. https://doi.org/10.1016/j.rse.2004.12.011. 

Zweifel, R., Eugster, W., Etzold, S., Dobbertin, M., Buchmann, N., Häsler, R., 2010. Link 
between continuous stem radius changes and net ecosystem productivity of a 
subalpine Norway spruce forest in the Swiss Alps. New Phytol. 187, 819–830. 
https://doi.org/10.1111/j.1469-8137.2010.03301.x. 

C.Y.S. Wong et al.                                                                                                                                                                                                                              

https://doi.org/10.1111/gcb.13200
https://doi.org/10.1111/gcb.13200
https://doi.org/10.1016/j.agrformet.2019.107859
https://doi.org/10.1016/j.rse.2020.111644
https://doi.org/10.1016/j.rse.2020.111644
https://doi.org/10.1016/j.rse.2019.111407
https://doi.org/10.1111/nph.16479
https://doi.org/10.1016/j.rse.2007.07.004
http://refhub.elsevier.com/S0034-4257(21)00355-2/rf0425
http://refhub.elsevier.com/S0034-4257(21)00355-2/rf0425
http://refhub.elsevier.com/S0034-4257(21)00355-2/rf0425
https://doi.org/10.5194/bg-15-5779-2018
https://doi.org/10.1016/j.rse.2004.12.011
https://doi.org/10.1111/j.1469-8137.2010.03301.x

	Importance of the legacy effect for assessing spatiotemporal correspondence between interannual tree-ring width and remote  ...
	1 Introduction
	2 Methods
	2.1 Study sites
	2.2 Tree rings/radial growth
	2.3 Climate data
	2.4 Estimating local density from Voronoi polygons
	2.5 MODIS data
	2.6 Solar-induced fluorescence products
	2.7 Data analysis

	3 Results
	4 Discussion
	4.1 Satellite estimation of the interannual variation in tree-ring width
	4.2 Site-specific performance
	4.3 Limitations

	5 Conclusions
	Author contributions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


