INVITED REVIEW

Trait Multi-Functionality in Plant Stress Response

Lawren Sack 1,* and Thomas N. Buckley†

*Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA; †Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA

1E-mail: lawrensack@ucla.edu

Synopsis Plants often experience multiple stresses in a given day or season, and it is self-evident that given functional traits can provide tolerances of multiple stresses. Yet, the multiple functions of individual traits are rarely explicitly considered in ecology and evolution due to a lack of a quantitative framework. We present a theory for considering the combined importance of the several functions that a single trait can contribute to alleviating multiple stresses. We derive five inter-related general predictions: (1) that trait multifunctionality is overall highly beneficial to fitness; (2) that species possessing multifunctional traits should increase in abundance and in niche breadth; (3) that traits are typically optimized for multiple functions and thus can be far from optimal for individual functions; (4) that the relative importance of each function of a multifunctional trait depends on the environment; and (5) that traits will be often “co-opted” for additional functions during evolution and community assembly. We demonstrate how the theory can be applied quantitatively by examining the multiple functions of leaf trichomes (hairs) using heuristic model simulations, substantiating the general principles. We identify avenues for further development and applications of the theory of trait multifunctionality in ecology and evolution.

Introduction

Plants are adapted to a sessile life, and thus endure fluctuating environmental conditions across days and seasons, including extremes in light, temperature, and water availability, and threats by herbivores, pathogens, and fire. If one defines “environmental stress” as a condition reducing fitness in the absence of adaptation (Hoffmann and Hercus 2000; Del Giudice et al. 2018), plants would generally experience multiple stresses each day, were it not for their adaptations. Adaptation to avoid, reduce, or mitigate stress can be atomized in terms of measures of organism structure and function, referred to as “functional traits,” which may be discrete (i.e., present/absent) and/or may vary continuously across species (Ackerly et al. 2000; Ackerly and Monson 2003; Violle et al. 2007). Most studies focus on single roles of given traits (Caruso et al. 2019). Yet, plant stresses are often combined (Grubb 1998; Laanisto and Niinemets 2015), and a given functional trait can provide tolerances of multiple stresses (Table 1; Gutschick 1999; Givnish 1987; Hoof et al. 2008; Pasquet-Kok et al. 2010; Pivovaroff et al. 2014; Tsujii et al. 2016; Medeiros et al. 2019; Farina et al. 2019; Rosell 2019). No framework has existed to explain why traits have multiple functions, or to quantify the relative importance of each trait function in given environmental contexts.

Here, we present a theory for considering the combined importance of a given trait in alleviating multiple stresses. We then apply the general theory quantitatively using model simulations examining a common plant trait, leaf trichomes (hairs), substantiating the general principles. We identify avenues for further development and refinement of the theory and applications of the theory of trait multifunctionality in ecology, evolution, and genetics.

Basic derivation of the multifunctional impact of given traits on plant fitness

A functional trait may influence any component of fitness—e.g., growth, survival, or fecundity—though
<table>
<thead>
<tr>
<th>Plant structures or structural traits</th>
<th>Putative functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf trichome density</td>
<td>Reflection of excess irradiance, leaf wettability, leaf water uptake, boundary</td>
<td>Ehleringer et al. (1976), Baldocchi et al. (1983), Press (1999), Dalin et al. (2008), (Kenzo et al., 2008), Agrawal et al. (2009), Aryal and Neuner (2010), Fernandez et al. (2014), Bickford (2016), and Tsujii et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>layer thickness (and thus, water use efficiency, and control of leaf temperature), protection from herbivory</td>
<td></td>
</tr>
<tr>
<td>Leaf mass per area (LMA)</td>
<td>Higher LMA confers increased leaf lifespan due to mechanical protection, resistance to herbivory, conservative resource use, higher photosynthetic rate per leaf area; lower LMA contributes to greater light capture, and faster growth</td>
<td>Wright et al. (2004), Poorter et al. (2008), and Onoda et al. (2011)</td>
</tr>
<tr>
<td>Leaf size</td>
<td>Smaller leaf size reduces overheating under high temperatures (via thinner boundary layer), and/or provides drought tolerance via denser leaf major veins; larger leaves may achieve greater photosynthetic rates in warmer/wetter conditions, larger leaves may have greater light capture per mass invested, and may cast shade on competing plants</td>
<td>Givnish (2008), Scoffoni et al. (2011), Sack et al. (2012), and Wright et al. (2017)</td>
</tr>
<tr>
<td>Plant height, and tree growth form</td>
<td>Greater height confers the ability to escape shade, enhanced propague dispersal, and deeper roots to access nutrients and the water table; short stature confers reduced wind exposure, shorter hydraulic pathlength and corresponds to smaller vessels and potentially greater drought tolerance</td>
<td>Moles et al. (2009), Thomson et al. (2011), and Boyce et al. (2017)</td>
</tr>
<tr>
<td>Xylem</td>
<td>Water transport, storage and support, with relative functions depending on allocation to different cell types, i.e., the transport function contributed by the conduits, the water storage by tracheids, and support by tracheids and fibers</td>
<td>Pratt et al. (2008) and Plavcova et al. (2019)</td>
</tr>
<tr>
<td>Leaf vein bundle sheath</td>
<td>Sugar loading and unloading from the phloem, water storage, nutrient transport, filtering the transpiration stream, photosynthetic reactions in C₄ species</td>
<td>Griffiths et al. (2013) and Sack and Scoffoni (2013)</td>
</tr>
<tr>
<td>Leaf bundle sheath extensions</td>
<td>Light capture, water storage, water transport</td>
<td>Sack and Scoffoni (2013)</td>
</tr>
<tr>
<td>Wood density</td>
<td>High wood density corresponds to smaller vessels and potentially increased drought tolerance, as well as mechanical protection and potentially greater resistance of herbivory</td>
<td>Poorter et al. (2008), Zanne et al. (2010), and Reich (2014)</td>
</tr>
<tr>
<td>Chemical composition traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf nitrogen concentration</td>
<td>Higher N contributes to higher photosynthetic rate, and lower N to reduced palatability to herbivores</td>
<td>Grubb (1998) and Reich (2014)</td>
</tr>
<tr>
<td>Leaf silicon concentration</td>
<td>High Si concentration may contribute to generalized abiotic stress tolerance and resistance to herbivory</td>
<td>Cooke et al. (2016) and Deshmukh et al. (2017)</td>
</tr>
<tr>
<td>Plant physiological traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transpiration rate</td>
<td>A special case of multifunctionality arising as a side-effect. Transpiration in plants is widely recognized to occur as a consequence of opening stomata for carbon assimilation, because the moist leaf interior is exposed to the desiccating outside air. Thus, transpiration rate is considered to mainly incur costs, in necessitating the construction of roots and transport tissue. However, multiple benefits have accrued to transpiration: Higher transpiration rate may enable leaf cooling and reduce overheating, may increase nutrient transport through soil to leaves, and from roots to leaves.</td>
<td>Gates (1968), Tanner and Beevers (1990, 2001), and Cramer et al. (2009)</td>
</tr>
<tr>
<td>C₄ photosynthesis</td>
<td>Tolerance of high temperatures, mild or moderate drought, soil salinity, and low CO₂.</td>
<td>Sage (2004)</td>
</tr>
<tr>
<td>Plant volatile emission rates and composition</td>
<td>Plant volatile compounds may act as signals for plant cross-talk, reduce overheating, attract pollinators, deter herbivores directly or by attracting the enemies of herbivores, act in pathogen defense, and contribute to ozone quenching</td>
<td>Pichersky and Gershenzon (2002) and Holopainen (2004)</td>
</tr>
</tbody>
</table>

Traits may be discrete (i.e., present/absent in different species) and/or may vary continuously, with the value contributing to variation in function. Putative functions are listed non-exhaustively with references; in some cases multiple functions have been demonstrated in given or different species, and in other cases, controversies have developed over whether one or another function exists or is important.
the specific components of fitness, and their importance, may vary across different species (Orr 2009). Further, the influence of a trait on any component of fitness would vary according to the environment. We assume that a quantitative trait with a value T influences fitness through a number J of functions f_j of T and the environment (a vector of environmental variables, e), and also through direct construction and/or metabolic costs that scale with T by a proportionality factor, c (which itself may depend on the f_j and e). Thus,

$$
F = g(f_1(T, e), f_2(T, e), \ldots, f_J(T, e), e) - T \cdot c(f_1(T, e), f_2(T, e), \ldots, f_J(T, e), e),
$$

(1)

where $g()$ is a generic mathematical function describing how the f_j and the environment interact to influence F independent of the trait’s costs.

To quantify the dependence of fitness on a trait’s multiple functions, one can estimate the effect of an infinitesimal change in T on fitness, which is the sum of the functions’ marginal influences (m_j), minus the trait’s marginal cost (Fig. 1):

$$
\frac{dF}{dT} = \sum_{j=1}^{J} \frac{\partial g}{\partial f_j} \frac{\partial f_j}{\partial T} - c - T \sum_{j=1}^{J} \frac{\partial c}{\partial f_j} \frac{\partial f_j}{\partial T}
$$

$$
= \sum_{j=1}^{J} m_j(T, e) - C(T, e),
$$

(2)

where $C = c + T \sum_{j=1}^{J} \frac{\partial c}{\partial f_j} \frac{\partial f_j}{\partial T}$ is the marginal cost of the trait; if c does not depend on the functions directly, then C simply equals the unit marginal cost, c.

When natural selection has optimized the value of T, then $dF/dT = 0$, analogous to the equimarginality principle, which holds that profit is maximized when the marginal product of inputs equals their marginal cost (e.g., Bloom et al. 1985):

$$
\sum_{j=1}^{J} m_j(T, e) = C \text{ (optimum)}.
$$

(3)

Equation (3) extends the equimarginality principle to the case where an input (the trait) generates a product (fitness) via multiple “revenue streams” (the trait’s multiple functions). The marginal influence of a given function need not be positive: a function may switch from beneficial to detrimental depending on the environmental context. This framework accounts for the array of costs associated with multifunctionality, and accounting for these costs systematically should ensure that simply adding functions to a trait does not artificially inflate the magnitude of F. Given economies of scale with respect to the multiple functions of traits, such that the costs are not always proportional to the benefits, additional functions will tend to increase F.

A finite trait shift (say, from T_1 to T_2) causes a finite change in fitness ($\delta F = F(T_2) - F(T_1)$), which can be deconvolved into partial influences (p_j) from each of the trait’s multiple functions: i.e., the portions of δF that can be attributed to each function. The partial influences cannot be calculated unambiguously unless $g()$ is linear (in which case they are independent and separable), but one estimate of p_j is the definite integral of m_j over the trait shift:

$$
p_j(T_1, T_2, e) = \int_{T_1}^{T_2} m_j(T, e) dT.
$$

(4)

The partial influences can also be expressed as fractions of the total influence (Buckley and Díaz-Espejo 2015; Rodriguez-Domínguez et al. 2016), by dividing each by δF to give the relative influence (r_j) of function j:

$$
r_j = \frac{p_j(T_1, T_2, e)}{\delta F(T_1, T_2, e)},
$$

(5)

where $\delta T = T_2 - T_1$. The relative influences add to one. If $r_j = 0.75$, for instance, then T impacts fitness mostly (75%) via function j, and the other functions mediate only 25% of the trait’s total influence on fitness.

Five predictions of trait multifunctionality

Several key principles emerge from this theory. First, trait multifunctionality should be extremely common. Equation (1) shows that adopting new beneficial functions for an existing trait enhances fitness without necessarily increasing the trait’s cost proportionally. Note that some traits might require

![Fig. 1 Multifunctional traits influence fitness through a set of distinct effects (functions), including the direct cost of the trait itself. The dependence of each function on the trait, the functions themselves and the effects of each function on fitness, may each be directly influenced by environmental conditions.](image-url)
modification to confer an additional function, and this should occur with an economy of scale with respect to cost. For example, leaf trichomes can prevent herbivory by interfering with insect access to the lamina tissue, regardless of the trichome color (Dalin et al. 2008), but if bright in color, they can also reflect excess sunlight, and thus, cost-effective, bright trichomes would be expected (Ehleringer et al. 1976).

Second, species with multi-functional stress tolerance traits should have a wide niche breadth, being favored in any environment that includes at least one of the multiple stresses that the trait mitigates, and being excluded only in environments in which the trait has a net detriment. For example, leaf trichomes may contribute positively to fitness in environments with excess light, herbivores, or both, but would reduce fitness in shady environments lacking herbivores.

Third, from Equation (3), because traits should be optimized for multiple rather than single functions, traits should take values far from their optima with respect to single functions.

Fourth, from Equation (5), a trait’s multiple functions can shift in relative importance depending on the environment.

Fifth, the fitness benefit of trait multi-functionality over the evolutionary history of a lineage or a given species explains why traits should frequently be “co-opted” for additional functions, i.e., switch from one role to another (also known as “exaptation”; Gould and Vrba 1982). Indeed, exaptations have been frequently described in biology, with feathers originating before they were used in flight, and metabolism networks shifting in function (Barve and Wagner 2013). Numerous examples occurred in the history of plant life (Table 2). Traits may evolve a new function de novo when an environmental stress is relieved, due to climate change or the invasion of a new environment without the stress, given the evolution of a second benefit by slightly shifting the trait would outweigh the trait’s cost. Additionally, traits may take on a new function by “pre-adaptation,” when a species with a multi-functional trait invades a new environment in which the original stress is absent but the trait mitigates a new stress (Ackerly 2004). Over time, the trait may shift to optimize the new function, and lose effectiveness or relevance for the original function.

Illustrating the benefits of trait multi-functionality quantitatively: the importance of leaf hairstyle

To demonstrate these concepts, we consider leaf trichomes (hairs), an often charismatic trait present in typically >50% of species of diverse ecosystems (Johnson 1975). Trichomes are diverse in structure and density and can provide a range of functions depending on the species, influencing light relations, gas exchange, water uptake, water repellency and protection from herbivory, and thereby contribute critically to environmental tolerances and

<table>
<thead>
<tr>
<th>Trait</th>
<th>Context for shift in trait function</th>
<th>Original function(s)</th>
<th>New function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant cell wall</td>
<td>Algae to land plants</td>
<td>Reduction of volume shrinkage during dehydration stress in algae</td>
<td>Structural support on land</td>
<td>de Vries and Archibald (2018)</td>
</tr>
<tr>
<td>Stomata</td>
<td>From the sporophytes of bryophytes to across vascular plants</td>
<td>Aiding the dehydration of spores in the sporophyte</td>
<td>Control of water loss and carbon gain</td>
<td>Duckett et al. (2009), Field et al. (2015), and Brodribb et al. (2020)</td>
</tr>
<tr>
<td>High vein density</td>
<td>from C₃ to C₄ species</td>
<td>Increasing the water supply and enabling greater stomatal opening and rates of photosynthetic carbon gain</td>
<td>A component of Kranz anatomy, with Calvin cycle reactions confined to the leaf vein bundle sheaths, an anatomical mechanism enabling the C₄ carbon concentrating mechanism</td>
<td>Sage (2004) and Christin et al. (2013)</td>
</tr>
<tr>
<td>Small vessels</td>
<td>In lineages that radiated out of the tropics into the temperate zone</td>
<td>Tolerance of aridity</td>
<td>Tolerance of freeze–thaw embolism</td>
<td>Zanne et al. (2014)</td>
</tr>
<tr>
<td>Leaf trichomes (hairs)</td>
<td>In milkweeds</td>
<td>Tolerance of aridity</td>
<td>Tolerance of herbivory</td>
<td>Agrawal et al. (2009)</td>
</tr>
<tr>
<td>Urushiol</td>
<td>In species of the Anacardiaceae (e.g., poison ivy)</td>
<td>Reduction of microbe infection and growth</td>
<td>Deterrence of disturbance by humans</td>
<td>Mohan et al. (2006) and Jang et al. (2018)</td>
</tr>
</tbody>
</table>
productivity in crop and non-crop species (Table 1). Research to clarify the roles of leaf trichome density has been hampered by lack of an integrative approach, and thus, leaf trichomes are generally ignored in current models of leaf and plant optical properties, gas exchange, productivity and water use, and trait-based ecological distributions. Yet, characterizing the linkage between structure and function can inform the design of crops with improved tolerances (e.g., of drought or herbivory), water use efficiency, and productivity (Baldocchi et al. 1983; Peter et al. 1995; Dalin et al. 2008), with potential applications in food security and sustainability, even mitigating regional climate change, e.g., by promoting leaf cooling (Doughty et al. 2011).

We tested the five general principles derived from trait multifunctionality theory with a modeling analysis. We focus on three of the known functions of

![Image](https://academic.oup.com/icb/article/60/1/98/5673390)

Fig. 2 The fitness advantage of multifunctionality in any given environmental combination. Quantitative partitioning of changes in fitness (mean photosynthetic rate over the leaf’s lifespan) caused by increases in a quantitative trait (leaf trichomes, i.e., hairs, in this example), relative to a value of zero for that trait (no trichomes in this case), into contributions (“partial influences”; A and B) from each of multiple functions and the direct cost of the trait shift, in two environmental conditions (A: 35°C; B: 15°C). In warmer conditions, all three functions of leaf trichomes are beneficial, such that accumulating more functions always improves fitness (C: short-dashed line = fitness including only the boundary layer function [b], long-dash = with the albedo function added [b + a], solid line = further adding the herbivory function [b + a + h]). Thus, the optimal value of trichome density (open circle in C) is high. By contrast, in cooler conditions, only the herbivory function is beneficial, so the boundary layer and albedo functions are detrimental (B) and the optimal trichome density is lower (D). Note that the partial effects have the same dimensions as the measure of fitness, which in this case is a photosynthetic rate and hence a flux (CO₂ uptake per unit time, per unit leaf area).
leaf trichomes: deterring herbivory, which increases the mean functional lifespan of leaves; increasing leaf boundary layer resistance, which reduces the exchange of water vapor, CO₂, and sensible heat between the leaf and atmosphere; and increasing albedo (reflectance of visible light). The latter two functions may be beneficial in some circumstances and detrimental in others. In the Appendix, we provide heuristic expressions for these functions, and a biophysical model of leaf gas exchange and energy balance, enabling the estimation of how leaf trichomes would influence fitness by impacting the net carbon balance of a leaf over its lifespan.

First, we confirmed a fitness advantage of trait multifunctionality over single functionality in environments with combined stresses, i.e., under very high irradiance (hence high temperature) and herbivory (Fig. 2A, C). In a low-temperature environment, two of the trait’s functions are detrimental (Fig. 2B), yet the optimal trichome density is still positive (Fig. 2D) due to the benefit of the herbivory function.

Second, we confirmed that a species with multifunctional stress tolerance traits should increase in abundance across environments. Across a landscape of combinations of high and low irradiance and herbivory, in which one assumes a threshold fitness necessary for persistence, trichome multifunctionality enabled a species to occupy a larger area of niche space (Fig. 3).

Third, we confirmed that the optimal trait value for a multifunctional trait differed from the value which would be calculated with respect to a single function. The optimal value of leaf trichome density varies with irradiance, and, independently, increases with herbivore pressure (Fig. 4).

Fourth, we confirmed that trait functions shift in relative importance depending on the environment, with the importance of trichomes for mitigating high temperatures or herbivory increasing under the appropriate conditions (Fig. 5).

Finally, we confirmed that leaf trichomes should switch in their major function during evolution, i.e., show trait co-optation or exaptation (Table 2 and Fig. 6). In our simulation, a species is initially adapted to an environment not favorable for leaf trichomes (low temperature, high irradiance, and lacking herbivores). When a herbivore enters the environment, creating a fitness benefit for leaf
trichomes, there is selection for the development of trichomes. Later, the environment warms, enhancing the benefit of leaf trichomes. Eventually, the herbivore pressure recedes, yet the trichomes are retained, due to their benefit associated with reflecting excess light in a hot environment. Thus, hairy leaves initially evolved to mitigate herbivory, but were later co-opted to mitigate heat stress.

These simulations show how trait multifunctionality can be considered quantitatively in a synthetic modeling approach, and supported the general principles of trait multi-functionality.

Outlook: the complex network of trait multifunctionality

Given the importance of trait multifunctionality, tests and debates focused on the importance of singular trait functions may miss their overall important contribution. Indeed, across populations of given species, or different species, traits may not align with environmental gradients as expected from consideration of tolerance of single stresses (Fig. 4; Fletcher et al. 2018; Rosas et al. 2019).

Recognition of trait multifunctionality requires a network conceptualization of trait–function relationships, especially when considering other important complexities in trait-based ecology. Suites (or “constellations,” or networks) of correlated traits have been recognized to contribute in ensemble to stress tolerance. For example, “economics” traits, frequently inter-correlated, contribute to tolerance of resource scarcity by reducing overall demand for resources (e.g., high leaf mass per area, high wood density, high foliar nutrient concentrations [Sack et al. 2003; Wright et al. 2004; Reich 2014]). Flooding tolerance depends on aerial roots as well as aerenchyma (Yamauchi et al. 2018). Such complexities can be addressed by considering nested functions for the traits in Equation (1). Further, multiple independent traits may contribute in combination, or alternatively, to a single higher level function, i.e., “many-to-one mapping” (Wainwright et al. 2005; Wainwright 2007); for example, leaf thickness and leaf toughness may both contribute to tolerance of resource scarcity by increasing leaf longevity (Onoda et al. 2011). On the other hand, there is also the possibility of trade-offs among traits, which could affect the net fitness benefit of a trait in a given environment (Del Giudice et al. 2018). For example, a greater leaf osmotic concentration may provide drought tolerance, but may constrain maximum stomatal opening when water is available (Henry et al. 2019). Notably, such trade-offs, and the costs of traits, may be reduced when trait expression can be shifted across plant ontogenetic (developmental) stages, and across environments; some traits, such as leaf trichomes, are inducible in some species in the environments in which they provide a benefit. Thus, a complete model of the influence of traits on fitness would consider the influence of the trait’s expression throughout growth in a given environment.

Given trait multifunctionality, we need a new generation of approaches to resolve the underlying basis for species variation in performance across environments and distributions across habitats and climates. Experiments are needed to examine the multiple functions of given traits for given species across a range of environments. Further, improved process-based models are needed to scale up from traits to predicting plant performance, stress tolerance, and fitness, in a range of environments (e.g., Buckley and Roberts 2006; Marks and Lechowicz 2006). As shown here for leaf trichomes, such models will

Fig. 5 Quantitative importance of given function depends on environment. The contributions of each of a trait’s multiple functions (partial influences, indicated by the wide shaded bars) to the overall net benefit of the trait (indicated by the narrow hashed bars; “all combined”) depend on environmental conditions. Partial influences were calculated for every combination of three binary environmental conditions (high and low temperature [35°C and 15°C, respectively] and light [1500 and 500 μmol m⁻² s⁻¹, respectively] and presence or absence of herbivory [minimum leaf lifespan 0.5 or 1.0 years, respectively]), at the optimum level of leaf trichome density; results are shown for the six combinations for which trichomes were predicted to be beneficial, ordered by increasing total fitness benefit.
highlight the pivotal complexities of trait multifunctionality, with networks relating multiple traits directly and indirectly to multiple functions, and vice versa. Further, while this approach has been developed with a focus on plants, the framework is general enough to investigate trait multifunctionality in other organismal systems too.

Acknowledgments

We are grateful to Alec Baird, Marvin Browne, Christian Henry, Bill Hoffmann, Nathan Kraft, Camila Medeiros, Dyonishia Nieves, and Marissa Ochoa for discussion and comments on the manuscript.

Funding

This work was supported by the U.S. National Science Foundation [Grant Nos 1457279 and 1557906] and the USDA National Institute of Food and Agriculture (Hatch project 1016439).

References

Brodribb TJ, Sussmilch F, McAdam SAM. 2020. From reproduction to production, stomata are the master regulators. Plant J published online (doi:10.1111/tpj.14561).

Buckley TN, Roberts DW. 2006. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain. Tree Physiol 26:129–44.

Brodribb TJ, Sussmilch F, McAdam SAM. 2020. From reproduction to production, stomata are the master regulators. Plant J published online (doi:10.1111/tpj.14561).

Buckley TN, Roberts DW. 2006. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain. Tree Physiol 26:129–44.

antibacterial activity and phenolic constituents of bark, lig-

Johnson HB. 1975. Plant pubescence: an ecological perspec-

Jones HG. 1992. Plants and microclimate. 2nd edn. Cam-
bridge (UK): Cambridge University Press.

Kenzo T, Yoneda R, Azani MA, Majid NM. 2008. Changes in
leaf water use after removal of leaf lower surface hairs on
Mallotus macrostachyus (Euphorbiaceae) in a tropical sec-

Laanisto L, Niinemets U. 2015. Polytolerance to abiotic
stresses: how universal is the shade-drought tolerance

Marks CO, Lechowicz MJ. 2006. A holistic tree seedling
model for the investigation of functional trait diversity.

Medeiros CD, Scoffoni C, John GP, Bartlett MK, Inman-
Narahari F, Ostertag R, Cordell S, Giardina C, Sack L.
2019. An extensive suite of functional traits distinguishes
Hawaiian wet and dry forests and enables prediction of

Mohan JE, Ziska LH, Schlesinger WH, Thomas RB, Sicher
RC, George K, Clark JS. 2006. Biomass and toxicity
responses of poison ivy (*Toxicodendron radicans*) to ele-
vated atmospheric CO₂. Proc Natl Acad Sci U S A
103:9086–9.

Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW,

Nobel PS. 2009. Physicochemical and environmental plant

Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ,
Nobel PS. 2009. Physicochemical and environmental plant

Orr HA. 2009. Fitness and its role in evolutionary genetics.

Pasquet-Kok J, Creese C, Sack L. 2010. Turning over a new
‘leaf’: multiple functional significances of leaves versus
phyllodes in Hawaiian *Acacia koa*. Plant Cell Environ
33:2084–100.

Peter AJ, Shanower TG, Romeis J. 1995. The role of plant
trichomes in insects resistance: a selective review.
Phytophaga (Madras) 7:41–64.

Pichersky E, Gershenzon J. 2002. The formation and function
of plant volatiles: perfumes for pollinator attraction and

Making the best of the worst of times: traits underlying
combined shade and drought tolerance of *Ruscus aculeatus*
and *Ruscus microglossum* (Asparagaceae). Funct Plant Biol
41:11–24.

Plavcova L, Gallemuller F, Morris H, Khatamirad M, Jansen
S, Speck T. 2019. Mechanical properties and structure-
function trade-offs in secondary xylem of young roots

Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-
Manrique G, Harms KE, Licoka JC, Martinez-Ramos M,
Mazer SJ et al. 2008. Are functional traits good predictors
of demographic rates? Evidence from five Neotropical for-

Plant hydraulics: new discoveries in the pipeline. New
Phytol 179:590–3.

Press MC. 1999. The functional significance of leaf structure:

Reich PB. 2014. The world-wide ‘fast-slow’ plant economics

Rodriguez-Dominguez CM, Buckley TN, Egea G, de Cires A,
Most stomatal closure in woody species under moderate
drought can be explained by stomatal responses to leaf

Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S,
Martinez-Vilalta J. 2019. Adjustments and coordination of
hydraulic, leaf and stem traits along a water availability

Rosell JA. 2019. Bark in woody plants: understanding the
diversity of a multifunctional structure. Integr Comp Biol
59:535–47.

Sack L, Grubb PJ, Maranon T. 2003. The functional morphol-
ogy of juvenile plants tolerant of strong summer drought
in shaded forest understories in southern Spain. Plant Ecol
168:139–63.

Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran
JC, Tran H, Tran T. 2012. Developmentally based scaling
of leaf venation architecture explains global ecological pat-

Sack L, Scoffoni C. 2013. Leaf venation: structure, function,
development, evolution, ecology and applications in the

Phytol 161:341–70.

Decline of leaf hydraulic conductance with dehydration:
relationship to leaf size and venation architecture. Plant
Physiol 156:832–43.

Tanner W, Bevers H. 1990. Does transpiration have an es-
sential function in long-distance ion transport in plants?

Tanner W, Bevers H. 2001. Transpiration, a prerequisite for
long-distance transport of minerals in plants?. Proc Natl

Thomson FJ, Moles AT, Auld TD, Kingsford RT. 2011. Seed
dispersal distance is more strongly correlated with plant

quantitative analysis of phenotypic variations of
Metrosideros polymorpha within and across populations
along environmental gradients on Mauna Loa, Hawaii.

Viole C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel
I, Garnier E. 2007. Let the concept of trait be functional!!

Von Caemmerer S, Farquhar GD. 1981. Some relationships
between the biochemistry of photosynthesis and the gas

Wainwright PC. 2007. Functional versus morphological diver-
For simplicity, we estimate carbon balance based on leaf gas exchange at a single point in time, meant to be indicative of average conditions over the leaf’s lifespan. We define carbon balance as photosynthesis (net CO₂ assimilation rate, \(A \)) minus three costs: the cost of acquiring and transporting water to leaves to replace evaporative vapor losses (assumed to be proportional to the evaporation [transpiration] rate \(E \) by a factor \(\gamma \)), the cost of the trichomes themselves (assumed proportional to leaf trichome density \(H \), arbitrary units) by a factor \(c \), amortized over the leaf lifespan \((\tau) \), and the cost of other leaf tissues \((L) \), also amortized over the leaf lifespan \((\tau_{leaf}) \):

\[
F(H, e) = A(H, e) - \chi(e) \cdot E(H, e) - \frac{cH + L}{\tau_{leaf}(H, e)} \quad (6)
\]

Biophysical models for \(A \) and \(E \) are given below, after the derivation of expressions for the multiple functions of leaf trichomes. The dependences of \(A \) and \(E \) on \(H \) arise from multiple functions of leaf trichomes. For example, albedo \((\rho) \) affects photosynthesis directly via light capture and indirectly via effects of light on leaf temperature. Boundary layer resistance \((\eta) \) affects the substrate concentration \(([CO_2]) \) for photosynthesis by restricting CO₂ diffusion into the leaf, and also affects the activity of photosynthetic and respiratory enzymes via leaf temperature. \(\eta \) directly affects the rate of water vapor diffusion out of the leaf, but also indirectly affects the vapor gradient from leaf to air, because the vapor concentration in the leaf airspaces depends on leaf temperature. Water use efficiency \((\text{carbon gain per unit water loss}) \) is thus indirectly influenced by both \(\rho \) and \(\eta \). Deterrence of herbivory affects carbon balance by increasing the average leaf lifespan.

For the sake of demonstration, we describe the herbivory deterrence function, \(f_h \)—that is, the effect of leaf trichomes on leaf lifespan via herbivory deterrence—as follows:

\[
f_h(H, e) = \frac{\tau_{leaf}(H, e)}{\tau_{leaf}(0, e)} = 1 + \frac{H}{H + \beta_h \left(\frac{\tau_{leaf, max}(e)}{\tau_{leaf}(0, e)} - 1 \right)} \quad (7)
\]

where \(\beta_h \) is an empirical parameter representing the trichome density at which the herbivory deterrence effect is one-half of its maximum, \(\tau_{leaf, max} \) is the maximum leaf lifespan in the absence of herbivory, and \(\tau_{leaf}(0) \) is the minimum leaf lifespan in the presence of unmitigated herbivory. \(\tau_{leaf} \) is shown as depending on the environment \((e) \) to capture the effect of herbivore presence itself on \(\tau_{leaf}(0) \); in the simulations shown in the main text, we adjusted \(\tau_{leaf}(0) \) upward or downward to denote decreased or increased herbivore pressure, respectively. Thus, \(f_h = 1 \) in the absence of trichomes \((H = 0) \), and \(f_h \) increases with \(H \) in saturating fashion, toward an asymptote of \(\tau_{leaf, max}/\tau_{leaf}(0) \).
Boundary layer resistance affects the total resistances for H_2O and CO_2 diffusion between the leaf airspaces and the atmosphere (r_{bw} and r_{bc}, respectively), and defines the resistance for sensible heat exchange with the atmosphere (r_a). r_{bw} and r_{bc} are also affected by the resistance through stomatal pores in the leaf epidermis. We suppose that leaf trichomes of length h_b increase boundary layer resistance in saturating fashion, by adding a resistance that asymptotically approaches the diffusive resistance of a perfectly still air of thickness h_b, or h_b/D_{sw} (where D_{sw} is the binary diffusivity of water vapor in air). Thus, the function of trichomes with respect to boundary layer resistance, f_{bw}, is

$$f_{bw}(H, e) = \frac{r_{bw}(H, e)}{r_{bw}(0, e)} = \frac{r_{bw}(0, e) + \frac{H}{H + \beta_b \cdot \frac{r_{bw}(0, e)}{h_b}}}{r_{bw}(0, e)},$$

where β_b is an empirical factor that captures the efficacy of leaf trichomes in reducing advective transport, and probably depends on trichome shape; β_b would be smaller for shapes that were more effective in reducing transport. Note that f_{bw} is independent of the diffusing species (CO_2, H_2O, or heat). $r_{bw}(0, e)$ depends on the environment chiefly due to the effect of wind speed, as

$$r_{bw}(0, e) = 0.004 \cdot \frac{R_{gas} \cdot T_{air} \cdot K}{D_{sw} \cdot P_{atm}} \sqrt{\frac{d_l}{v_w}},$$

where R_{gas} is the ideal gas constant (8.31446 Pa m3 mol$^{-1}$ K$^{-1}$), $T_{air, K}$ is the air temperature in kelvins, P_{atm} is the atmospheric pressure in pascals, d_l is the downwind leaf width in meters, and v_w is the wind speed in m s$^{-1}$ (Nobel 2009). Equation (9) gives r_{bw} in units of m2 s mol$^{-1}$ (the term 0.004 implicitly has units of s m$^{-1}$). The diffusivities for heat, water vapor, and CO_2 differ, such that, for a flat plane, r_e equals 1.08 r_{bw} and the boundary layer resistance for CO_2, r_{bc}, equals 1.37 r_{bw}. These ratios are smaller than the ratio of the respective molecular diffusivities, because transport through a boundary layer is partly by advection, which is unaffected by diffusivity. (By contrast, the ratio of the stomatal resistances to CO_2 [r_{st}] and H_2O [r_{sw}] equals the ratio of D_{sw} to the molecular diffusivity of CO_2 [1.6], because transport through stomata is entirely by diffusion; Cowan 1977.) The relative contributions of diffusion and advection to transport through the trichome layer are unknown and may vary with trichome morphology and density; for simplicity in this heuristic exercise, Equation (8) assumes diffusion predominates.

Finally, we suppose that leaf trichomes increase albedo (ρ) in saturating fashion, approaching unity for infinitely dense trichomes:

$$f_{sw}(H) = \frac{\rho(H)}{\rho(0)} = \frac{\rho(0) + (1 - \rho(0)) \cdot \frac{H}{H + \beta_a}}{\rho(0)} = 1 + \frac{H}{H + \beta_a} \cdot \left(\frac{1}{\rho(0)} - 1\right),$$

where $\rho(0)$ is the minimum albedo (i.e., the value in the absence of leaf trichomes). To compute the effects of boundary layer resistance and albedo on photosynthesis and transpiration, we use a biophysical model for A and E given by Von Caemmerer and Farquhar (1981). Photosynthesis can be limited either by carboxylation of ribulose-1,5-bisphosphate (RuBP) in the Calvin cycle, or by regeneration of RuBP. Under carboxylation-limited conditions, A is given by

$$A_v = V_{max} \cdot \left(\frac{q_i - \Gamma^*}{q_i + K_c (1 + \frac{q_i}{\Gamma})}\right) - R_d,$$

where V_{max} is the maximum velocity of RuBP carboxylation by the enzyme Rubisco, q_i is the concentration of CO_2 in the intercellular airspaces, Γ^* is the photosynthetic CO_2 compensation point, K_c and K_o are the Michaelis constants for RuBP carboxylation and oxygenation, respectively, O is the oxygen concentration, and R_d is the rate of non-photorespiratory CO_2 release. Under regeneration-limited conditions, A is given by

$$A_j = \frac{1}{4} \cdot \left(\frac{q_i - \Gamma^*}{q_i + 2 \Gamma^*}\right) - R_d,$$

where j is the potential rate of electron transport through the photosynthetic electron transport chain, given by

$$j = \left(\frac{1}{2 \theta_j}\right) \left(J_{max} + \phi i - \sqrt{(J_{max} + \phi i)^2 - 4 \theta_j J_{max} \phi i}\right),$$

where $\theta_j \leq 1$ is a dimensionless empirical parameter, J_{max} is the maximum potential electron transport rate, i is the absorbed photosynthetic photon flux, and ϕ is the effective quantum yield (Farquhar and Wong 1984). Note that the albedo effect of trichomes operates via i, which equals $i_a (1 - \rho(H))$, where i_a is the incident photosynthetic photon flux.

Photosynthesis is also limited by CO_2 diffusion across the boundary layer and through the stomatal pores, such that

$$A_k = \frac{c_i - q_i}{1.37 r_{bw}(H) + 1.6 r_{sw}},$$

where c_i is the ambient CO_2 concentration (outside the boundary layer) and r_{sw} is the stomatal resistance to water vapor. To eliminate q_i from these equations, one can combine
Equations (10) and (13) to produce a quadratic expression for c_1 under carboxylation-limited conditions, and then apply that expression to Equation (10) to compute A under carboxylation-limited conditions (A_{1c}). This is repeated using Equations (11) and (13) to compute A under regeneration-limited conditions (A_2), and finally the actual assimilation rate is calculated as the hyperbolic minimum of A_1, and A_2:

$$A = \left(\frac{1}{2\theta_A}\right) \left(A_v + A_j - \sqrt{(A_v + A_j)^2 - 4\theta_A A_v A_j}\right),$$

(15)

where $\theta_A \leq 1$ is a dimensionless empirical parameter describing the degree of colimitation. Transpiration rate is given by

$$E = \frac{w_{sat}(T_{leaf}) - w_{air}}{r_{bw}(H) + r_{sw}},$$

(16)

where w_{sat} is the saturated water vapor mole fraction, which depends on leaf temperature (T_{leaf}) and is an estimate of the water vapor mole fraction in the leaf intercellular airspaces, and w_{air} is the ambient water vapor mole fraction. Equation (16) assumes cuticular transpiration is negligible, and the leaf is amphistomatous. The dependence of w_{sat} on T is given by

$$w_{sat}(T) = \frac{0.006112}{P_{atm}} \exp\left(\frac{17.62 \cdot T}{243.12 + T}\right),$$

(17)

(World Meteorological Organization 2008), where T is in degrees C. T_{leaf} can be estimated from energy balance. The expressions above for A and E depend on leaf temperature (several parameters in Equations (10)–(12) are temperature-dependent), and T_{leaf} in turn depends on E. Resolving this system thus requires a model for leaf energy balance. At steady state, and ignoring chemical energy storage, thermal energy balance for a leaf implies

$$0 = Q(H) + \epsilon_{air}\sigma T_{air,K}^4 - \epsilon_{leaf}\sigma T_{leaf,K}^4 - \frac{\epsilon_{pa}}{h_b(H)}(T_{leaf,K} - T_{air,K}) - \lambda E,$$

(18)

where Q is the absorbed shortwave radiation ($\approx 0.3173 \cdot 1.07$; Buckley et al. 2014), T_{air}, and T_{leaf} are air and leaf temperatures, respectively, in kelvins, ϵ_{air} and ϵ_{leaf} are the longwave emissivities of the atmosphere and leaf, respectively ($\epsilon_{air} = 0.642(\frac{w_{air}}{P_{atm}/T_{air}})^{1/3}$; Brutsaert 1975), σ is the Stefan–Boltzmann constant, ϵ_{pa} is the molar heat capacity of air, and λ is the latent heat of vaporization.

Equation (17) assumes that the leaf in question is atop a canopy exposed to the atmosphere, and that lower leaves have a similar temperature as the target leaf, so that net infrared emission occurs only from the upper leaf surface. Solving for $T_{leaf,K}$ requires eliminating the term in the 4th power of T_{leaf} and the implicit dependence of E on T_{leaf} via w_{sat}. $T_{leaf,K}^4$ can be eliminated by the following approximation:

$$T_{leaf,K}^4 \approx T_{air,K}^4 + 4T_{air,K}^3\delta_T,$$

(19)

which arises from expanding $(T_{air,K} + \delta_T)^4$, where $\delta_T = T_{leaf,K} - T_{air,K}$ and omitting terms with 2nd- or higher powers of δ_T (e.g., Jones 1992). To eliminate the dependence of $w_{sat}(T_{leaf})$ on T_{leaf} this term can be approximated by linear extrapolation, as

$$w_{sat}(T_{leaf}) \approx w_{sat}(T_{air}) + s\delta_T,$$

(20)

where s is the derivative of w_{sat} with respect to T, evaluated at T_{air} ($s = w_{sat}(T_{air}) - 17.62 \cdot 243.12/(243.12 + T_{air})^2$). Then Equation (15) can be written as

$$E = \frac{w_{sat}(T_{air}) - w_{air}}{r_{bw}(H) + r_{sw}} + \frac{s\delta_T}{r_{bw}(H) + r_{sw}}.$$

(21)

Applying Equations (18) and (20) to Equation (17) gives δ_T as

$$\delta_T = \frac{Q(H) + (\epsilon_{air} - \epsilon_{leaf})\sigma T_{air,K}^4 - \frac{\epsilon_{pa}}{h_b(H)} T_{leaf,K} - \lambda E}{4\epsilon_{leaf} T_{air,K}^3 + \frac{\epsilon_{pa}}{h_b(H)} + \frac{s\delta_T}{r_{bw}(H) + r_{sw}}},$$

(22)

T_{leaf} is then calculated as $T_{air} + \delta_T$.

The values of temperature-dependent photosynthetic parameters (V_{cmax}, J_{max}, Γ, K_o, R_d, θ_p, and ϕ) were adjusted for leaf temperature (Bernacchi et al. 2001, 2003). For V_{cmax}, J_{max} and R_d, values at 25°C were assumed to be proportional to i_o (Field 1983; Farquhar 1989), such that $V_{cmax}(25^\circ C) = \{50 \mu mol \ m^{-2} \ s^{-1}\} \cdot (i/o/1500 \mu mol \ m^{-2} \ s^{-1})$, $J_{max}(25^\circ C) = 2.1 \cdot V_{cmax}(25^\circ C)$ (Wullschleger 1993), and $R_d(25^\circ C) = 0.0089 \cdot V_{cmax}(25^\circ C)$ (de Purry and Farquhar 1997). Stomatal conductance ($1/r_{sw}$) was also assumed to scale with $V_{cmax}(25^\circ C)$, such that $r_{sw} = \{7 \ m^2 \ s^{-1} \ mol^{-1}\} \cdot (50 \mu mol \ m^{-2} \ s^{-1} \cdot V_{cmax}(25^\circ C))$.

We applied the model described above using parameter values given in Table A1, and varied three input parameters during simulations: air temperature (T_{air}), incident photosynthetic photon flux (i_o), and $\tau(0)$, the latter adjusted to represent changes in baseline herbivory pressure.
Table A1 Mathematical symbols used in this Appendix

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Units</th>
<th>Value if fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net CO₂ assimilation rate</td>
<td>A</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>A under RuBP regeneration-limited conditions</td>
<td>A_j</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>A under RuBP carboxylation-limited conditions</td>
<td>A_c</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Michaelis constant for albedo function</td>
<td>β_a</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Michaelis constant for boundary layer function</td>
<td>β_b</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Michaelis constant for herbivory deterrence function</td>
<td>β_h</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unit cost of leaf trichomes</td>
<td>c</td>
<td>μmol m⁻²</td>
<td>0.25</td>
</tr>
<tr>
<td>Ambient CO₂ mole fraction</td>
<td>c_a</td>
<td>μmol mol⁻¹</td>
<td>400</td>
</tr>
<tr>
<td>intercellular CO₂ mole fraction</td>
<td>c_i</td>
<td>μmol mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>unit carbon cost of water uptake and transport</td>
<td>χ</td>
<td>μmol mol⁻¹</td>
<td>1500</td>
</tr>
<tr>
<td>molar heat capacity of air</td>
<td>c_{pa}</td>
<td>J mol⁻¹ K⁻¹</td>
<td>29.2</td>
</tr>
<tr>
<td>downwind leaf width</td>
<td>d_l</td>
<td>m</td>
<td>0.025</td>
</tr>
<tr>
<td>binary diffusivity of water vapor in air</td>
<td>D_{wva}</td>
<td>m² s⁻¹</td>
<td>2.55 \times 10⁻⁵</td>
</tr>
<tr>
<td>leaf transpiration rate</td>
<td>E</td>
<td>mol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>longwave emissivity of atmosphere</td>
<td>e_{air}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>longwave emissivity of leaf</td>
<td>e_{leaf}</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>fitness (carbon balance)</td>
<td>F</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>albedo function of leaf trichomes</td>
<td>f_a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boundary layer function of leaf trichomes</td>
<td>f_b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>herbivory deterrence function of leaf trichomes</td>
<td>f_h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>effective quantum yield of electrons</td>
<td>ϕ</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>photorespiratory CO₂ compensation point</td>
<td>Γ_*</td>
<td>μmol mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>leaf trichome density</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>absorbed photosynthetic photon flux</td>
<td>i</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>incident photosynthetic photon flux</td>
<td>i_o</td>
<td>μmol m⁻² s⁻¹</td>
<td>500 or 1500</td>
</tr>
<tr>
<td>potential electron transport rate</td>
<td>J</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>maximum potential electron transport rate</td>
<td>J_{max}</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Michaelis constant for RuBP carboxylation</td>
<td>K_c</td>
<td>μmol mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>Michaelis constant for RuBP oxygenation</td>
<td>K_o</td>
<td>μmol mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>carbon cost of leaf tissues other than trichomes</td>
<td>L</td>
<td>μmol m⁻²</td>
<td>0.56</td>
</tr>
<tr>
<td>leaf trichome height</td>
<td>l_h</td>
<td>m</td>
<td>2.5 \times 10⁻⁴</td>
</tr>
<tr>
<td>latent heat of vaporization</td>
<td>λ</td>
<td>J mol⁻¹</td>
<td>44000</td>
</tr>
<tr>
<td>ambient oxygen concentration</td>
<td>O</td>
<td>μmol mol⁻¹</td>
<td>210000</td>
</tr>
<tr>
<td>atmospheric pressure</td>
<td>P_{atm}</td>
<td>Pa</td>
<td>101325</td>
</tr>
<tr>
<td>absorbed shortwave radiation</td>
<td>Q</td>
<td>J m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>curvature parameter for photosynthesis</td>
<td>θ_A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curvature parameter for electron transport rate</td>
<td>θ_j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leaf boundary layer conductance to water vapor</td>
<td>r_{low}</td>
<td>m³ s⁻¹ mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>rate of non-photorespiratory CO₂ release</td>
<td>R_d</td>
<td>μmol m⁻² s⁻¹</td>
<td></td>
</tr>
<tr>
<td>ideal gas constant</td>
<td>R_{gas}</td>
<td>Pa m³ mol⁻³ K⁻¹</td>
<td>8.31446</td>
</tr>
<tr>
<td>stomatal resistance to water vapor</td>
<td>r_{sw}</td>
<td>m³ s⁻¹ mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>leaf albedo (shortwave reflectivity)</td>
<td>ρ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>derivative of w_{sat} with respect to temperature</td>
<td>s</td>
<td>mol mol⁻¹ K⁻¹</td>
<td></td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>σ</td>
<td>J m⁻² s⁻¹ K⁻⁴</td>
<td>5.67 \times 10⁻⁸</td>
</tr>
<tr>
<td>Description</td>
<td>Symbol</td>
<td>Units</td>
<td>Value if fixed</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>air temperature</td>
<td>T_{air}</td>
<td>°C</td>
<td>15 or 35</td>
</tr>
<tr>
<td>air temperature in kelvins</td>
<td>$T_{air, K}$</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>leaf temperature</td>
<td>T_{leaf}</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>leaf temperature in kelvins</td>
<td>$T_{leaf, K}$</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>leaf lifespan</td>
<td>s_{leaf}</td>
<td>years</td>
<td>0.5 or 1</td>
</tr>
<tr>
<td>leaf lifespan in the absence of leaf trichomes</td>
<td>$s_{leaf(0)}$</td>
<td>years</td>
<td></td>
</tr>
<tr>
<td>maximum leaf lifespan</td>
<td>$s_{leaf, max}$</td>
<td>years</td>
<td>1</td>
</tr>
<tr>
<td>ambient water vapor mole fraction</td>
<td>w_{air}</td>
<td>mol mol$^{-1}$</td>
<td>0</td>
</tr>
<tr>
<td>saturated water vapor mole fraction</td>
<td>w_{sat}</td>
<td>mol mol$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>RuBP carboxylation capacity</td>
<td>V_{cmax}</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>wind speed</td>
<td>v_{w}</td>
<td>m s$^{-1}$</td>
<td>10</td>
</tr>
</tbody>
</table>