

Tracking the origins of the Kok effect, 70 years after its discovery

The 18th New Phytologist Workshop 'The Kok effect: beyond the artefact, emerging leaf mechanisms (KOALA)' Angers, France, July 2016

Introduction

The 18th New Phytologist Workshop was dedicated to possible causes of the Kok effect, the typical break in the light response curve of net photosynthesis. Available data obtained since its discovery in 1948 show that the effect is not purely caused by a down-regulation of respiration, contrary to the commonly accepted view. However, estimates of leaf respiratory rates obtained in various ecosystems with techniques including the Kok method appear to be widely consistent across different studies, suggesting that Kok-derived values can be used as a surrogate for actual day respiration values.

Gross CO₂ assimilation of photosynthetic organs of plants is accompanied by concurrent efflux of CO₂ by photorespiration and day respiration (i.e. nonphotorespiratory CO₂ evolution in the light). While the rate of photorespiration can be predicted using the internal CO₂ mole fraction and equations that describe gas exchange (taking into account the stoichiometry of CO₂ liberation with respect to O₂ fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase), estimating day respiration is much more challenging because there is no equation that can predict its rate as a function of net photosynthesis, CO2 mole fraction or other environmental parameters. That is, in equations describing gas exchange (or isotopic mass balance), day respiration (R_d) has to be determined separately or simply assumed to model net carbon (C) exchange. At the leaf level, day respiration represents a C loss of c. 5% of gross-fixed CO₂ but this proportion is highly variable, depending on species and conditions (see, e.g. Atkin et al., 1997). Estimates of day respiratory CO₂ loss rely on specific techniques used to measure R_d : amongst them, the Kok method is certainly the most popular, because it is easy to implement in the laboratory or in the field using classical gas-exchange systems. This method takes advantage of the 'Kok effect', a phenomenon first described in the 1940s in unicellular algae (Kok, 1948, 1949). This effect is further described later, and in Fig. 1. The Kok effect is believed to be primarily caused by the inhibition of respiration by light and thus provides a direct way to estimate R_d . At the present date, c. 800 published works have used, or cited, the Kok method, representing c. 40% of articles that involve a measurement of R_d or deal with day respiration. However, some persisting doubt remains about the validity of this method, simply because the Kok effect is inconstant

and influenced by environmental conditions (such as O_2 mole fraction) in ways that may not be consistent with day respiratory metabolism. Considering the wide range of applications, and the considerable number of articles that have been published, there is an urgent need to clarify the origin of the Kok effect and to evaluate its relevance to measure R_d . This was the objective of the 18th New Phytologist Workshop that took place in July 2016 in Angers (France).

What is the Kok effect?

The 'Kok effect' refers to the change in quantum yield of net photosynthesis (Φ) at low light levels: at very low light levels (typically 0–20 μ mol m⁻² s⁻¹ of incident photosynthetically active radiation, iPAR), the quantum yield (denoted as Φ_1) is larger than that observed at higher light levels (Φ_2). In practice, when a light response curve of net photosynthesis is performed, there is a change in the slope and a break point (examples are shown in Fig. 1). In general, Φ_1 is c. 0.1 under standard conditions (25°C, 21% O₂ and 380 μ mol mol⁻¹) while Φ_2 is c. 0.06 (Fig. 2). These values are rather similar when net photosynthesis is measured as CO₂ fixation or O₂ release (but data on the assimilatory quotient at low light, presumably close to 1, are scarce). Thus, the relative change in quantum yield above the break point is about (0.1-0.06)/0.1 = 40% at ambient CO_2 (380 µmol mol⁻¹). Note that computing a true value of quantum yield requires a correction for leaf absorbance so as to convert incident radiation into absorbed light. The extrapolated intercept associated with the second portion of the response curve gives an estimate of R_d (illustrated in Fig. 1a), which is typically lower than R_n , the rate of respiration in darkness (night respiration). In other words, in this region of irradiance, the response curve of net assimilation is modelled as $A = \Phi_2 \cdot iPAR \cdot \alpha$ - R_d while at very low light, it is modelled as $A = \Phi_1 \cdot i PAR \cdot \alpha$ - $R_{\rm n}$, where α is leaf light absorbance.

Problems associated with the Kok method itself should be recognized. First, in practice, carrying out a light response curve at very low light can be difficult due to the small difference between inlet and outlet air in open gas exchange systems (since A is low) and leaks, even very modest, can be an issue. Second, observing the two linear portions of the light response curve (and thus calculating R_d , Φ_1 and Φ_2) can be rather difficult when the number of data points is limited. A good graphical resolution is also necessary to see the break point (e.g. compare the resolution of Fig. 1a and b). Consequently, there is often some uncertainty in the choice of data points to draw linear regressions. Including or excluding points in the presumed neighbourhood of the break point can change Φ -values and R_d significantly. For example, in Fig. 1(a), excluding and including the third point gives Φ_1 values

Fig. 1 Examples of response curves of net photosynthesis to incident light (iPAR) in cucumber leaves, under 21% O_2 , 23°C and 380 μ mol mol⁻¹ CO_2 (a) and in Rumex acetosa, at 30°C and 350 μ mol mol⁻¹ CO₂ under 0.5% O₂ (grey) or 21% O₂ (black) (b, c). In (a), the first slope (at low light level) is denoted as Φ_1 and the second slope (at higher light level) is denoted as Φ_2 . The continuous and dashed lines represent the linear regression obtained when regression regions are 0–25 and 25–90 μ mol m⁻² s⁻¹ (i.e. three points are used to draw the line at low light). Dotted lines represent regressions obtained when regression regions are 0–15 and 15–90 $\mu mol\,m^{-2}\,s^{-1}$ (i.e. two points only are used to draw the line at low light level). The Kok-estimate of day respiration (denoted as R_d) is the intercept of the second regression line and is here found to be c. 0.35–0.47 μ mol m⁻² s⁻¹. In (b), continuous lines stand for hyperbolic trends of the curves. In (c), a magnification at low light is shown. Values of quantum yield (corrected for leaf absorbance) are shown for each portion of linear regression. From unpublished data presented at the 18th New Phytologist Workshop (mean \pm SD, n = 5).

of 0.099 and 0.085, respectively, and gives R_d values of 0.47 and 0.35 μ mol m⁻² s⁻¹, respectively. A recommendation to solve this problem is to have a sufficient number of measurements: typically, at least three in the 0–10 μ mol m⁻² s⁻¹ region.

Why is the Kok effect of high significance?

The Kok method is used widely to estimate R_d , including in widespectrum studies carried out in different species or ecosystems

Fig. 2 Quantum yield of photosynthesis as a function of external CO₂ mole fraction (c_a) in *Rumex acetosa* leaves at 30°C, 21% O₂. (a) Φ_1 (black circles) and Φ_2 (white circles). (b) Relative difference between Φ_1 and Φ_2 : $\Delta \Phi = (\Phi_1 - \Phi_2)/\Phi_1 \times 100$. Values (triangles) obtained in leaves kept under constant light for 24 h (300 µmol m⁻² s⁻¹) before the Kok-curve (mean \pm SD, n = 5). Values associated with Fig. 1 are plotted as a square (cucumber) and a diamond (*Rumex*). Curves represent hyperbolic trends. In (a), the horizontal continuous and dashed lines represent the value of Φ_2 (measured as the quantum yield of net photosynthetic O₂ evolution instead of CO₂ consumption) at high c_a in Björkman & Demmig (1987) and the average Φ_1 value found by Long *et al.* (1993) under 0.5% O₂, respectively. In (b), the dashed line represents the average value at high c_a (> 600 µmol mol⁻¹). From unpublished data presented at the 18th New Phytologist Workshop.

under various conditions. For example, the Kok method has been implemented recently in an unpublished world-wide survey presented at the Workshop by Owen Atkin, Mary Heskel and others, in arctic species (Heskel *et al.*, 2014), in tropical tree canopies (Weerasinghe *et al.*, 2014), in trees in different seasons (Way *et al.*, 2015) and at varying CO₂ (Crous *et al.*, 2012; Kroner & Way, 2016), or in different species along a vegetation chronosequence (Atkin *et al.*, 2013). The usefulness of Kokderived estimates of leaf respiration in the light for ecosystem C budget studies has been extensively discussed (Heskel *et al.*, 2013). Interestingly, the Kok effect has been shown to scale up to the ecosystem, that is, with a break in the response curve of net ecosystem uptake of CO_2 to measured irradiance (Bruhn *et al.*, 2011). At the Workshop, it has been recognized that in general, Kok-derived estimates of R_d are lower than R_n by 20–40%, consistent with the well-accepted inhibition of leaf respiratory metabolism by light. Comparisons with R_d values obtained using other techniques (such as the Laisk method, which takes advantage of response curves to CO_2 mole fraction) have also been shown to be rather satisfactory despite some variability (see, e.g. Villar *et al.*, 1994). Further data presented during the Workshop also showed a relatively good agreement between Kok-, Laisk- and isotope-derived R_d values in spinach, cocklebur and *Magnolia* leaves (Barbour *et al.*, 2017).

What are the origins of the Kok effect?

Despite considerable efforts and discussions during the 18th New Phytologist Workshop, no simple explanation of the Kok effect could be articulated. Several causes have received attention, related to the different terms that describe net assimilation under light-limited conditions:

$$A = \gamma \frac{J_{\rm t}}{4} \frac{c_{\rm c} - \Gamma^*}{c_{\rm c} + 2\Gamma^*} - R_{\rm d}$$
 Eqn 1

where γ is the cyclic-pseudocyclic electron flow coefficient, J_t is the total electron flow, c_c is the internal CO₂ mole fraction at

carboxylation sites, and Γ^* is the CO₂ compensation point in the absence of day respiration. However, Eqn 1 may be re-arranged easily with Φ_1 and Φ_2 (as given earlier) since J_t can be rewritten as a function of iPAR: $J_t = \alpha a \Phi_{PSII}$ iPAR (where Φ_{PSII} is the photochemical yield of photosystem II (PSII) and *a* is light distribution between PSI and PSII). It is evident from this relationship that the change in slope (Φ_1 vs Φ_2) in the Kok effect can have diverse origins, with a change in γ , *a*, Φ_{PSII} , *c*_c or *R*_d with light.

The widely-accepted (historical) origin of the effect is the inhibition of respiratory metabolism by light (linear decrease of R_d with light) and in fact, mechanisms for the down-regulation of respiratory decarboxylation reactions by light have been described (reviewed in Tcherkez *et al.*, 2012). In addition, the pentose phosphate pathway (PPP), which also liberates CO₂, has been shown to be inhibited by light, even at very low light levels (Singh *et al.*, 1993; Farr *et al.*, 1994). A metabolic steady-state model has also suggested that at low light, the enhancement of the PPP can potentially explain the Kok effect (Buckley & Adams, 2011).

However, a purely respiratory (catabolic) origin of the Kok effect is highly unlikely. In fact, it strongly depends on gaseous conditions whereas R_d is not expected to be very sensitive to CO₂ and O₂ mole fraction. The Kok effect disappears at low oxygen (Fig. 1b,c; Cornic & Jarvis, 1972; Ishii & Murata, 1978; Sharp *et al.*, 1984), suggesting that photorespiration could be involved. The Kok effect also depends on CO₂: the relative difference between Φ_1 and Φ_2 decreases, but does not disappear, at high CO₂ mole fraction (Fig. 2), suggesting again that photorespiration could explain part

Table 1 Summary of hypotheses discussed at the 18th New Phytologist Workshop to explain the origin of the Kok effect (see the text for further details)

Possible origin	Likely?	Experimental evidence	Comments
Regulation of respiratory decarboxylations (decrease in R _d) when light increases	Yes	Biochemical evidence of enzymatic down-regulation in the light compared to the dark.	No specific study of respiratory metabolism at (very) low light; not consistent with the negligible impact of respiratory inhibitors on the Kok effect.
Increase in c_i at very low light	No	The Kirshbaum–Farquhar correction introduces minimal correction, and stomatal conductance does not correlate with the Kok effect	
Increase in c_c at very low light	Yes	Explains the O_2 -dependence, matches observed changes in quantum yield (Φ_1 , Φ_2) and explains the absence of Kok effect in C ₄ plants tested so far.	Might not be consistent with a persisting Kok effect at high CO_2 and in unicellular algae with a carbon concentrating mechanism (CCM) (see text); does not explain the breakpoint (discontinuity in the slope) when visible.
Change in the photorespiratory O_2/CO_2 stoichiometric coefficient to values larger than two, thereby decreasing Γ^* at very low light	No?	Isotopic labelling has shown that at (very) low photorespiration rates, the stoichiometric coefficient is not statistically different from two.	However, a small change in the stoichiometric coefficient from very low light to low light due to the change in c_c (oxygenation rate) might contribute marginally to the Kok effect.
Decrease in the cyclic electron flow thereby increasing the apparent photochemical yield at very low light	Yes	The maximal electron flow through photosystem I (PSI) decreases a lot and there is more Mehler reaction.	Potentially, the Kok effect should be sensitive to wavelength, and this has to be tested; further data on the assimilatory quotient CO_2/O_2 should also be informative.
Increase in the photochemical yield Φ_{PSII} at very low light	Yes?	$arPhi_{PSII}$ has been found to be higher at low light, but variable.	More measurements needed.
State transition in favour of PSII: increase in <i>a</i> at low light	Yes?	State transition of light harvesting complexes (LHCs) from PSI to PSII has been observed at low light.	More measurements needed.

of the effect. It should nevertheless be noted that the Kok effect disappears at extremely high $CO_2 (\geq 1\%)$ (Björkman & Demmig, 1987; Evans, 1987) but this observation might not be very conclusive due to side effects of extremely high CO_2 on C metabolism (including cellular acidification and inhibition of respiration).

Potentially, a photorespiratory origin could be due to: (1) a different photorespiratory metabolism at low light (such as a change in O_2/CO_2 stoichiometry) thereby making the 'scaling factor' $(c_c - \Gamma^*)/(c_c + 2\Gamma^*)$ erroneous in Eqn 1. Recently, slight changes in photorespiratory stoichiometry have been found at high O_2 or low CO_2 but significant changes at very low photorespiration rates seem unlikely (Abadie *et al.*, 2016); or (2) changes in c_c along a light curve. Usually, the classical correction used to adjust *A* values to what they would be if intercellular CO_2 (c_i) were constant (Kirschbaum & Farquhar, 1987) is minimal and does not suppress the Kok effect. Still, the second hypothesis appears very likely, through the influence of internal conductance so that c_c/Γ^* (rather than c_i/Γ^*) increases considerably at low light (see the companion article Farquhar & Busch, 2017).

It is nevertheless improbable that an effect on c_c only can explain the Kok effect in totality. In fact, the effect persists at high CO₂ (Fig. 2). Furthermore, it has been originally described in unicellular algae with a carbon concentrating mechanism (CCM) (Kok, 1948) and has also been found in other CCMcontaining algae (Peltier & Sarrey, 1988). Also, the break in the light response curve, when it happens to be visible (as in Fig. 1c), would not be easy to explain since there is no clear reason for a discontinuous effect of internal conductance on $c_c/$ Γ^* . It should also be noted that the effect of gaseous conditions might not be inconsistent with metabolism: under the steadystate hypothesis, the balance of reductive power predicts that PPP activity should depend on CO₂ mole fraction (Buckley & Adams, 2011). Unfortunately, there is presently no published data (of either metabolomics or fluxomics) obtained at very low light along a Kok curve. Therefore, fluxes in catabolic pathways responsible for CO₂ generation at very low light are not very well known. Recent unpublished data obtained using isotopic (¹³C) labelling and presented during the Workshop by Gauthier and co-workers have nevertheless suggested that at very low light, decarboxylation by the pyruvate dehydrogenase is upregulated. Finally, other mechanisms associated with electron transport cannot be excluded. First, at very low light, there is an abrupt decrease in the cyclic electron flux around PSI that disappears under 2% O_2 , thereby suggesting that γ can change, may be due to the Mehler reaction (Laisk et al., 2005; Kou et al., 2013). Second, both the light partition to PSII (a) and the photochemical yield of PSII ($\Phi_{\rm PSII}$) have been found to increase at low light (Oberhuber et al., 1993; Yin et al., 2014).

Perspectives

A summary of possible explanations of the Kok effect is shown in Table 1. It is clear that the origin of this effect is not unique, and it is likely a combination of several processes that lead to an increase in the quantum yield of photochemistry, and cause gaseous (decrease in photorespiration due to the increase in c_c/Γ^*) and metabolic changes at very low light. In an effort to disentangle the mechanism of the Kok effect, more experiments should be done at very low light to ascertain catabolic pathways involved, examine electron transport parameters and the CO₂/O₂ assimilatory quotient, and use species where the Kok effect does not occur like C₄ plants (Cornic & Jarvis, 1972; Ishii *et al.*, 1979) and perhaps, C₃/C₄ intermediates. There is little doubt that the rate of day respiration R_d is lower than R_n because it has been shown using several methods (for a review, see Tcherkez & Ribas-Carbó, 2012). However, it seems clear that the Kok effect is not purely respiratory and thus, the values of R_d or R_d/R_n obtained with the Kok method have to be considered as proxies.

Guillaume Tcherkez^{1*}, Paul Gauthier², Thomas N. Buckley³, Florian A. Busch¹, Margaret M. Barbour⁴, Dan Bruhn⁵, Mary A. Heskel⁶, Xiao Ying Gong⁷, Kristine Crous⁸,
Kevin L. Griffin⁹, Danielle A. Way¹⁰, Matthew H. Turnbull¹¹, Mark A. Adams⁴, Owen K. Atkin¹², Michael Bender², Graham D. Farquhar¹ and Gabriel Cornic¹³

¹Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia;

²Department of Geosciences, Princeton University, Princeton, NJ 08540, USA;

³IA Watson Grains Research Centre, University of Sydney, 12656 Newell Hwy, Narrabri, NSW 2390, Australia;

⁴Centre for Carbon, Water and Food, University of Sydney,

380 Werombi Rd, Brownlow Hill, NSW 2570, Australia;

⁵Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark;

⁶The Ecosystems Centre, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA;

⁷Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354 Freising, Germany;

⁸Hawkesbury Institute for the Environment, Western Sydney

University, Locked Bag 1797, Penrith, NSW 2751, Australia;

⁹Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, Palisades, NY 10027, USA;

¹⁰Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada;

¹¹Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand;

¹²Division of Plant Science, ARC Centre of Excellence in Plant

Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, Australian National University,

Canberra, ACT 2601, Australia;

¹³Ecologie Systématique Evolution, Université Paris-Sud, 91405 Orsay Cedex, France

> (*Author for correspondence: tel +61 6125 0381; email guillaume.tcherkez@anu.edu.au)

New Phytologist

References

- Abadie C, Boex-Fontvieille ERA, Carroll AJ, Tcherkez G. 2016. *In vivo* stoichiometry of photorespiratory metabolism. *Nature Plants* 2: 15220.
- Atkin OK, Turnbull MH, Zaragoza-Castells J, Fyllas NM, Lloyd J, Meir P, Griffin KL. 2013. Light inhibition of leaf respiration as soil fertility declines along a postglacial chronosequence in New Zealand: an analysis using the Kok method. *Plant and Soil* 367: 163–182.
- Atkin OK, Westbeek M, Cambridge ML, Lambers H, Pons TL. 1997. Leaf respiration in light and darkness (a comparison of slow- and fast-growing *Poa* species). *Plant Physiology* 113: 961–965.
- Barbour MM, Ryazanova S, Tcherkez G. 2017. Respiratory effects on carbon isotope discrimination near the compensation point. In: Tcherkez G, Ghashghaie J, eds. *Plant respiration: metabolic fluxes and carbon balance. Advances in photosynthesis and respiration.* Dondrecht, the Netherlands: Springer, in press.
- Björkman O, Demmig B. 1987. Photon yield of O₂ evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. *Planta* 170: 489–504.
- Bruhn D, Mikkelsen TN, Herbst M, Kutsch WL, Ball MC, Pilegaard K. 2011. Estimating daytime ecosystem respiration from eddy-flux data. *Biosystems* 103: 309–313.
- **Buckley TN, Adams MA. 2011.** An analytical model of non-photorespiratory CO₂ release in the light and dark in leaves of C₃ species based on stoichiometric flux balance. *Plant, Cell & Environment* **34**: 89–112.
- **Cornic G, Jarvis PG. 1972.** Effect of oxygen on CO₂ exchange and stomatal resistance in Sitka spruce and maize at low irradiances. *Photosynthetica* **6**: 225–239.
- Crous K, Zaragoza-Castells J, Ellsworth D, Duursma R, Löw M, Tissue D, Atkin O. 2012. Light inhibition of leaf respiration in field-grown *Eucalyptus saligna* in whole-tree chambers under elevated atmospheric CO₂ and summer drought. *Plant, Cell & Environment* 35: 966–981.
- Evans J. 1987. The dependence of quantum yield on wavelength and growth irradiance. *Australian Journal of Plant Physiology* 14: 69–79.
- Farquhar GD, Busch FA. 2017. Changes in the chloroplastic CO₂ concentration explain much of the observed Kok effect: a model. *New Phytologist* 214: 570–584.
- Farr TJ, Huppe HC, Turpin DH. 1994. Coordination of chloroplastic metabolism in N-limited *Chlamydomonas reinhardtii* by redox modulation (I. The activation of phosphoribulosekinase and glucose-6-phosphate dehydrogenase is relative to the photosynthetic supply of electrons). *Plant Physiology* 105: 1037–1042.
- Heskel MA, Atkin OK, Turnbull MH, Griffin KL. 2013. Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. *Ecosphere* 4: art98.
- Heskel MA, Bitterman D, Atkin OK, Turnbull MH, Griffin KL, Armstrong A, Logan D, Atkin O, Armstrong A, Logan D *et al.* 2014. Seasonality of foliar respiration in two dominant plant species from the Arctic tundra: response to long-term warming and short-term temperature variability. *Functional Plant Biology* 41: 287.
- **Ishii R, Murata Y. 1978.** Further evidence of the Kok effects in C₃ plants and the effects of environmental factors on it. *Japanese Journal of Crop Science* 47: 547–550.
- Ishii R, Shibayama M, Murata Y. 1979. Effect of light on the CO_2 evolution of C_3 and C_4 plant in relation to the Kok effect. *Japanese Journal of Crop Science* 48: 52–57.

- Kirschbaum MUF, Farquhar GD. 1987. Investigation of the CO₂ dependence of quantum yield and respiration in *Eucalyptus pauciflora*. *Plant Physiology* 83: 1032–1036.
- Kok B. 1948. A critical consideration of the quantum yield of *Chlorella* photosynthesis. *Enzymologia* 13: 1–56.
- Kok B. 1949. On the interrelation of respiration and photosynthesis in green plants. *Biochimica et Biophysica Acta* 3: 625–631.
- Kou J, Takahashi S, Oguchi R, Badger MR, Chow WS. 2013. Quantification of cyclic electron flow in spinach leaf discs. In: Kuang T, Lu C, Zhang L, eds. *Photosynthesis research for food, fuel and future*. Berlin, Heidelberg, Germany: Springer, 271–274.
- Kroner Y, Way DA. 2016. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO₂ concentrations in a northern conifer. *Global Change Biology* 22: 2913–2928.
- Laisk A, Eichelmann H, Oja V, Peterson RB. 2005. Control of cytochrome b₆f at low and high light intensity and cyclic electron transport in leaves. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* 1708: 79–90.
- Long SP, Postl WF, Bolhar-Nordenkampf HR. 1993. Quantum yields for uptake of carbon dioxide in C₃ vascular plants of contrasting habitats and taxonomic groupings. *Planta* 189: 226–234.
- **Oberhuber W, Dai Z-Y, Edwards GE. 1993.** Light dependence of quantum yields of Photosystem II and CO_2 fixation in C_3 and C_4 plants. *Photosynthesis Research* **35**: 265–274.
- Peltier G, Sarrey F. 1988. The Kok effect and the light-inhibition of chlororespiration in *Chlamydomonas reinhardtii. FEBS Letters* 228: 259–262.
- Sharp RE, Matthews MA, Boyer JS. 1984. Kok effect and the quantum yield of photosynthesis: light partially inhibits dark respiration. *Plant Physiology* 75: 95–101.
- Singh KK, Chen C, Gibbs M. 1993. Photoregulation of fructose and glucose respiration in the intact chloroplasts of *Chlamydomonas reinhardtii* F-60 and spinach. *Plant Physiology* 101: 1289–1294.
- Tcherkez G, Boex-Fontvieille E, Mahé A, Hodges M. 2012. Respiratory carbon fluxes in leaves. *Current Opinion in Plant Biology* 15: 308–314.
- Tcherkez G, Ribas-Carbó M. 2012. Interactions between photosynthesis and day respiration. In: Flexas J, ed. *Terrestrial photosynthesis in a changing environment a molecular, physiological and ecological approach*. Cambridge, UK: Cambridge University Press, 41–53.
- Villar R, Held AA, Merino J. 1994. Comparison of methods to estimate dark respiration in the light in leaves of two woody species. *Plant Physiology* 105: 167–172.
- Way DA, Holly C, Bruhn D, Ball MC, Atkin OK. 2015. Diurnal and seasonal variation in light and dark respiration in field-grown *Eucalyptus pauciflora*. Tree *Physiology* 35: 840–849.
- Weerasinghe LK, Creek D, Crous KY, Xiang S, Liddell MJ, Turnbull MH, Atkin OK. 2014. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. *Tree Physiology* 34: 564–584.
- Yin X, Belay DW, van der Putten PEL, Struik PC. 2014. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis. *Photosynthesis Research* 122: 323–335.

Key words: CO_2 assimilation, incident photosynthetically active radiation, Kok effect, light response curve, net photosynthesis.