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Abstract

Atmospheric carbon dioxide [CO2] has increased dramatically within the current life spans of long-lived trees and old
forests. Consider that a 500-year-old tree in the early twenty-first century has spent 70% of its life growing under pre-
industrial levels of [CO2], which were 30% lower than current levels. Here we address the question of whether old trees
have already responded to the rapid rise in [CO2] occurring over the past 150 years. In spite of limited data, aging trees
have been shown to possess a substantial capacity for increased net growth after a period of post-maturity growth decline.
Observations of renewed growth and physiological function in old trees have, in some instances, coincided with Industrial
Age increases in key environmental resources, including [CO2], suggesting the potential for continued growth in old trees
as a function of continued global climate change.
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Over the last two centuries, anthropogenic induced changes
in the global environment have altered aspects of the Earth’s
carbon (C), nitrogen (N), and water cycles, and energy balance
(IPCC 2007). Although old trees are the only terrestrial organ-
isms to have lived through the entirety of the Industrial Age, little
is known about the effect of these environmental changes on
the physiology and growth of old trees (Carey et al. 2001; Chen
et al. 2004; Paw et al. 2004; Suchanek et al. 2004). Because of
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their unique conservation value and the important role these
trees play in the structure and function of old growth forest
ecosystems, it is worthwhile to consider the intrinsic capacity
of old trees to respond to global environmental change. In this
paper, we focus on the potential sensitivity of old growth trees
to the major driving force of climate change, which is increasing
atmospheric [CO2].

The few available experimental studies concerning the re-
sponse of old trees to environmental changes, such as thinning
(McDowell et al. 2003; Martı́nez-Vilalta et al. 2007), reveal that
very old trees are capable of dynamic responses to changes in
their environment. Evaluating the response of plants to current
environmental conditions, when they have developed under
pre-industrial conditions, can provide insight into long-term
vegetation responses to predicted global environmental change
scenarios (Körner 1993; Dippery et al. 1995; Ehleringer and
Cerling 1995; Ward and Strain 1997, 1999a; Sage and Cowling
1999). Further, recognition of the unique environmental history
experienced by old trees is critical to interpreting contemporary
responses of old trees to extreme events such as drought
(McDowell et al. 2008).

The dramatic rise in atmospheric [CO2] and other biogeo-
chemical cycles during the industrial age has occurred during
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the lifetimes of old growth trees, beginning when many of these
trees were already old (Figure 1). Because even current levels of
[CO2] are not sufficient to saturate photosynthesis of C3 plants,
increased [CO2] over the last 150 years may have increased
photosynthesis and growth of old trees. However, the magnitude
of this potential response is unknown (Figure 2). In addition to
the difficulty of accessing crowns of large trees, research on old
tree growth responses to environmental change may be limited
due to a long held view that old trees exhibit little potential
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Figure 1. Change in mean global atmospheric carbon dioxide over the

last millennium. Arrows indicate the ages of a contemporary 500-year-

old tree during this period.
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Figure 2. One possible realization of altered tree growth due to changes

in environmental variables.

The logistic growth trajectory in this figure is highly idealized and

commonly assumed (Weiner and Thomas 2001), and the departure

from logistic growth here illustrates the concept that growth of old

trees may be affected by environmental change. Resource availability

(N, nitrogen availability; PPT, precipitation; T, temperature) increases

around approximately year 90 in this illustration.

for growth (e.g., Kozlowski 1962). For example, it is commonly
reported that old trees decline in growth rate with age and size
(Ryan and Yoder 1997; Carey et al. 2001), and therefore it may
seem reasonable to conclude that old trees are not responsive
to increased [CO2].

On the other hand, because CO2 is such a central resource
to plant function, there are several potential ways in which
any plant, including old trees, could be sensitive to elevated
[CO2]. For example, post-industrial age increases in [CO2]
could alleviate limitations to water supply to the tops of large,
old trees (Ryan and Yoder 1997), through increased carbon
gain without increased stomatal opening (i.e., increased water
use efficiency). In turn, this could promote growth and alter
carbon allocation within old trees, which might be detected using
tree ring data. However, tree ring analysis for the purpose of
climate reconstruction has not produced clear consensus on
whether trees show growth stimulation from recent increases in
atmospheric [CO2] (Jacoby and Dı́Arrigo 1997). Moreover, most
tree ring sampling has been conducted in cold climates, such
as timberlines, where temperature is expected to most strongly
constrain tree growth. In warmer climates, recent data from
moist tropical forests (Laurence et al. 2004) and dry temperate
woodland (Knapp et al. 2001) suggests that elevated [CO2]
may be causing dramatic alterations in forest structure and
composition.

Our objective here is to challenge a common assumption
– that old trees are incapable of increased growth after post-
maturity decline in growth (e.g., Kira and Shidei 1967) – which
contributes to the widespread view that old trees and forests
progressively move toward zero net carbon gain and biomass
growth. Here, we address the growth responses of individual
trees and not the carbon relations of old growth forests, which
are discussed elsewhere (e.g. Carey et al. 2001; Bond and
Franklin 2002, and references therein; Pregitzer and Euskirchen
2004; Schuster et al. 2008). Although there is growing recogni-
tion that old forests have the capacity for significant carbon gain
(e.g. Carey et al. 2001; Zhou et al. 2006), this is often attributed
to factors other than the inherent capacity for growth in very old
individual trees.

Analysis of the response of old trees to environmental change
is necessarily biased toward tree species outside of the humid
tropics, mostly conifers from cold, arid environments. This is
driven by several factors: (i) Collection and analysis of annual
growth rings is much easier in highly seasonal environments;
(ii) the longest-lived trees appear to be conifers that occur in
seasonally cold and arid environments; and (iii) relatively little
research has been conducted on tree age in moist tropical
forests (Dean et al. 1996). Therefore it is difficult to generalize
how old trees of differing growth form or biogeography, par-
ticularly tropical trees, may respond to environmental change.
Nevertheless, recent research using sophisticated tree dating
methods indicates that trees from the moist tropics can be much
longer-lived than previously assumed (Fichtler et al. 2003),
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and the continued use of these methods will likely increase
knowledge of how old tropical trees respond to environmental
change.

In this study, based on our own research in a temperate
old growth forest and studies by others in other forests, we
suggest that (i) physiological constraints to growth associated
with large, old trees may be moderated by the post-industrial
age rise in [CO2]; (ii) old trees may maintain photosynthetic
capacity equivalent to young trees, which is a key (if neither
necessary nor sufficient) pre-condition for growth in old age; and
(iii) old trees may show increased growth after centuries of post-
reproductive maturity, which are difficult to interpret other than in
light of industrial age environmental change. We focus on trees
that were centuries old at the beginning of the industrial age, to
avoid the complication of deconvolving growth trends in trees
that underwent early development to maturity in concert with
the possible influence of Industrial Age environmental change
on growth (e.g., Kienast and Luxmoore 1988; Waterhouse et al.
2004; Körner et al. 2005; Schuster et al. 2008).

Environmental Modification
of Hydraulic Limitation?

Research over the past decade (e.g., Yoder et al. 1994; Ryan
and Yoder 1997; McDowell et al. 2002; Phillips et al. 2002, 2003;
Woodruff et al. 2004; Ryan et al. 2006) provides a compelling
indication that the response of tall, old trees to resource variation
may potentially differ from that in younger trees. In particular,
to the extent that physiological constraints in tall, old trees
result in carbon limitation, it is plausible to expect these trees
to show greater potential sensitivity to [CO2] variation than
younger trees in comparable environments. This hypothesis is
consistent with the general hypothesis that [CO2] responses of
vegetation should increase with water supply limitations (Strain
and Bazzaz 1983; Nowak et al. 2004), coupled with the fact that
hydraulic constraints in tall trees constitute a fundamental form
of water limitation; indeed, one that is indistinguishable from
soil water limitations (Koch et al. 2004; Woodruff et al. 2004).
Furthermore, recent research indicates that tree size and its
hydraulic correlates, rather than age per se, controls carbon
gain in old trees (Mencuccini et al. 2005). This suggests that
factors that alleviate internal or external resource constraints
on old trees could improve physiological function and ultimately
growth.

There are two key mechanisms by which tall trees are
hydraulically constrained in their ability to grow, and may be par-
tially relieved of this limitation by increased atmospheric [CO2].
Both are caused by the increasingly negative water potentials
that leaves atop tall trees must maintain to drive water flow
against both the large gravitational head and the long hydraulic
path length with its increased resistance (Yoder et al. 1994;
Ryan and Yoder 1997). First, large negative water potential in

tall trees may reduce photosynthesis, and thus carbon supply
for growth, either by reducing stomatal apertures (Yoder et al.
1994; McDowell et al. 2002) or by affecting mesophyll function
(Friend 1993; Tezara et al. 1999). Post-industrial age increases
in [CO2] could offset either of these effects, thereby alleviating
hydraulic constraints on carbon supply for growth.

Second, growth in tall trees is fundamentally constrained
by reduced leaf water status and its effects on cell turgor,
which drives expansion of newly formed tissues including leaves
(Woodruff et al. 2004). The effect on leaf expansion in par-
ticular may initiate a feedback, wherein carbon gain becomes
progressively more limited by leaf area. Industrial increases in
[CO2] could ameliorate these constraints in two ways: (i) by
increasing photosynthetic carbon gain (as discussed above) in
the leaf area that is successfully produced; or (ii) by directly
reducing stomatal conductance (Darwin 1898) and thus water
loss, thereby increasing water potential and turgor. We note
that these two outcomes cannot both be fully realized; rather,
they are limiting cases in a continuum of feasible responses.
For example, if trees grow more leaves in response to elevated
[CO2], this would increase transpiration and reduce benefits for
turgor (Woodward 1990).

Notwithstanding the potential complexity of long-term re-
sponses of forests to elevated [CO2] (Norby and Luo 2004),
the above considerations suggest a fundamental potential for
old growth trees to show greater photosynthesis and growth
under industrial age increases in [CO2] than they would under
constant, pre-industrial [CO2] levels. Simulations of [CO2] re-
sponses in hydraulically constrained tall trees demonstrate that
these effects of industrial age [CO2] on growth are theoretically
possible (figures 1, 3 in Buckley 2008); clearly, plausibility as
described above does not indicate probability. Yet, at the very
least, there are clear mechanisms by which hydraulic limitations
to growth in old trees could be modified by environmental
change. To date no experiments on hydraulic limitation to growth
in trees have acknowledged this possibility (Ryan et al. 2006,
and papers cited therein).

Observations on the Physiology
of Old Growth Trees

The premise of the preceding discussion is that growth in
old trees is limited by changes in resource supply, not by
intrinsic suppression of photosynthetic function. Our work and
that of others (e.g., Yoder et al. 1994; McDowell et al. 2002;
Winner et al. 2004; Delzon et al. 2005) demonstrates that, at
least in some old trees, photosynthetic capacity (i.e., defined
here as maximum photosynthetic rate under non-limiting light
and CO2) may be unaltered by age and size of tree, even
if net photosynthesis under ambient growth conditions may
become limited by stomatal closure. At the leaf level, 500-
and 20-year-old Douglas-fir trees both show high sensitivity of
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photosynthesis to atmospheric [CO2] (Figure 3). Consideration
of the photosynthetic saturation response of a wide range of
plant types to [CO2] supply indicates that the greatest sensitivity
of photosynthesis to [CO2] may occur at lower ranges of [CO2]
(e.g., Baker et al. 1990; Polley et al. 1992, 1993; Sage and Reid
1992; Johnson et al. 1993; Tissue et al. 1995; Ziska 2003),
including the transition between pre-industrial levels and today.
Figure 3 indicates that under optimal conditions there exists the
potential for an approximately 30% increase in photosynthetic
rate with an increase in [CO2] from pre-industrial to current
levels in old trees.

Leaf level photosynthetic data (see Figure 3) cannot generally
be scaled directly to long-term growth (Lloyd and Farquhar
1996; Drake et al. 1997; Morison and Lawlor 1999; Norby and
Luo 2004). Therefore, photosynthetic data demonstrates only
that the primary step in overall carbon gain by trees (photosyn-
thesis) may be affected by changes in atmospheric [CO2]. To
the extent that old trees – in fact, trees that were already old
and in a presumably stable, minimal growth phase when large
scale anthropogenic environmental change commenced – are
physiologically sensitive to altered [CO2] levels, we suggest that
much of the terrestrial vegetation currently growing on earth may
already be functioning differently than it would have before the
industrial revolution (Sage and Cowling 1999). Consequently,
we may need to re-evaluate the response of vegetation to
“elevated” [CO2] relative to “ambient” [CO2] in our experimental
manipulations (e.g., Free-Air CO2 Enrichment (FACE)), given
that the ambient [CO2] conditions has changed from 280 to 385
parts per million (ppm) in the last 150 years, and is increasing
at approximately 2 ppm per year (IPCC 2007). This shifting
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Figure 3. Typical responses of leaf net photosynthesis (measured as

net CO2 uptake) to ambient [CO2] in the crowns of (•) 500- and (◦)

20-year-old Douglas-fir trees.

Data from Wind River, Washington, June 22, 1999, during conditions

of saturating light. Site and sampling details are described in McDowell

et al. 2002.

ambient [CO2] “baseline” is well recognized (Polley et al. 1993;
Dippery et al. 1995; Tissue et al. 1995; Cowling and Sage
1998; Ward et al. 1999b; Ward et al. 2000; Ward 2005), but it
nevertheless presents complications in interpretations of global
change biology experiments.

For example, in a recent study, Körner et al. (2005) observed
the responses of approximately 100-year-old temperate trees
to [CO2] of 530 ppm and found that elevated [CO2] stimu-
lated carbon uptake by crowns of mature trees but did not
increase tree growth or litter production. However, the study by
Körner et al. (2005) was not designed to investigate, whether
(i) trees have already shown a ‘treatment effect’ in response
to the 30% increase in [CO2] that has occurred over the past
150 years; and (ii) whether 100-year-old trees developing in
concert with the Industrial Revolution might show a different
‘treatment effect’ than trees that were already reproductively
mature when the Industrial Revolution began. Indeed, even
untreated reference trees in the study by Körner et al. (2005)
were in a vigorous growth phase. To properly address this
question would require a pre-industrial [CO2] treatment, along
with a current-day ‘ambient’ control treatment, imposed from
early development through maturity. This is impracticable for
several reasons, which make it necessary to rely instead on
observational data like that provided by tree rings and modeling.

Tree Ring Increases in the
Twentieth Century

Contrary to the view that old trees approach zero growth, these
trees in the late twentieth century have the potential to exhibit
similar increases in girth as those observed in their early growth
years (Figure 4). Indeed, the doubling of ring width (from ca 1750
to ca 1950) as trees grow larger implies a more-than doubling
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Figure 4. Ring width chronology from an approximately 500-year-old

dominant Douglas-fir tree at Lava Beds, Washington, approximately

10 km from where the leaf level data were taken in Figure 3.

Each symbol is a decadal average, with standard deviations from 10-
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of area increment (Figure 4). At this site (Lava Beds, WA, USA),
at least half of 14 trees that were ca 600 years old displayed
mid-to-late twentieth century increases in ring width. For trees
at this site that did not exhibit such strong growth responses,
there are many reasons, including biotic competition (e.g., light),
disease and disturbance. Whether the rate of increase in tree
girth at this site is due to elevated [CO2] or other environmental
variables, and whether or not wood density decreased in the
newest growth rings, it is clear that, contrary to idealized growth
curves, old trees have the capacity to exhibit sustained diameter
growth in old age.

The phenomenon of twentieth century ring width increase has
been noted by other studies (e.g. La Marche et al. 1984; Jacoby
1986; Graybill 1987; Kienast and Luxmoore 1988; Graumlich
1991; Knapp et al. 2001; Bunn et al. 2005; Soulé and Knapp
2006). A particularly notable study was that of La Marche et al.
(1984), that found latter twentieth century increases in ring
widths in many-centuries-old bristlecone pine trees (Figure 5).
Subsequent work has even further strengthened the evidence
for twentieth century growth increases in old trees at high

Figure 5. Ring width time series in bristlecone pine trees from two sites in California, showing increases in the latter part of the twentieth century that

were uncorrelated with climate variation (temperature and precipitation data not shown).

Data represent averages of 13–15 trees in each site. In each of two sites above, the upper time series in the upper panel supplements the longer

time series in the lower panel of each site (which was obtained for a previous study), and shows ring widths (mm) instead of a standardized ring

width index (dimensionless; see www.ncdc.noaa.gov/paleo/treeinfo.html), because standardization procedures can confound environmental variation

from biological growth. From LaMarche VC et al. (1984), Science 225, 1019–1021. Reprinted with permission from American Association for the

Advancement of Science.

elevation (Bunn et al. 2005). The results from La Marche et al.
(1984) could not be explained by temperature or precipitation
variation over this time period, but were consistent with, and
attributed to the rise in atmospheric [CO2]. Although these
data appear to represent compelling circumstantial evidence for
carbon fertilization of old growth trees, this possibility has been
discounted and climate change has instead been implicated for
the observed responses in subsequent research (Bunn et al.
2005). Moreover, recent work has shown that pan evaporation,
the geometry of solar radiation, and forest carbon gain have
varied in concert over the last several decades (Gu et al. 2003;
Roderick and Farquhar 2005) and must also be considered as
potential drivers of these responses.

The capacity of old trees to respond to environmental change
has a key applied consequence: interpretation of annual rings
to detect climate change. A key initial step in tree ring analysis
is the detrending of biological growth curves, which are of
secondary interest (e.g., Esper et al. 2002). A continuing,
central challenge in tree ring-based climate analysis is to assess
whether changes occur in the growth curves themselves, due to
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[CO2] or to other environmental changes. Several approaches
have been developed to meet this analytical challenge (Graum-
lich 1991; Briffa et al. 1992; Knapp et al. 2001; Monserud and
Marshall 2001; Esper et al. 2002). Notwithstanding their value
in separating climate change signals from biological growth in
old trees, these techniques face a fundamental challenge
in attempting to separate (i) low frequency climate variation
from (ii) a “low frequency”, often sigmoidal, tree growth curve,
especially as they may interact.

Rings versus Leaders: Girth versus
Height Growth

The universally-observed cessation of height growth in long-
lived trees may promote a simplistic inference that growth in
general ceases in old trees. However, girth growth is common
in old trees and may even increase after centuries of stable or
decreasing girth growth. Regarding height, observations of the
annual leader on old trees with apical dominance show that they
do approach zero (Phillips, pers. obs. on 500 year old Douglas-
fir, Western hemlock, and Western red cedar trees, 1998, 1999,
2000), but the vertical position of the leader can fluctuate
inter-annually in response to inter-annual variation in soil or
atmospheric moisture (e.g., Koch et al. 2004). The cessation
of height but not girth growth is a provocative clue that height
growth cessation in old trees may be due to hydraulic (e.g. cell
turgor, expansion, and gravity; Koch et al. 2004; Woodruff et al.
2004) or biomechanical limitations that do not constrain girth
growth. This phenomenon also raises interesting questions.
Could increased atmospheric [CO2] have caused a gradual,
albeit small increase in tree height over what would have been
obtained in the absence of the industrial age rise in [CO2]? More
fundamentally, is continued girth growth of functional benefit
in old trees? At least two features of girth growth argue for
potential functional benefit: increased biomechanical support,
and provision of new vascular tissue to replace permanently
dysfunctional vascular tissue (Thomas 1996).

Simulating Old Tree Response
to Environmental Change

Tree growth modeling may be used to assess changes in
carbon uptake, growth, and allocation in old growth trees due
to alteration of [CO2], but validation of growth simulations in
old trees presents special challenges. First, there are no old
growth trees that can serve as “controls” (i.e., 500-year-old
trees having grown under pre-industrial [CO2] levels for their
entire lives). Second, directly determining above- and below-
ground allocation in old growth trees of large size would require
the harvesting of protected old trees and would be extremely
costly. Therefore, models are the only appropriate approach to
address these issues.

We used the DESPOT model (Buckley and Roberts 2006) to
evaluate differences in tree physiology and growth for a gener-
alized conifer growing in an even-aged stand over 400 years,
comparing steady pre-industrial [CO2] (280 μmol/mol) versus
monotonically increasing [CO2] (280–370 μmol/mol). Key at-
tributes of this model that made it appropriate for use here are
that it: (i) simulates long term (centuries) tree growth and carbon
allocation; and (ii) does not impose pre-determined constraints
on carbon gain or allocation. Instead, physiological constraints
(e.g., hydraulic, nutritional, and metabolic) emerge and are
modified as a result of optimal carbon allocation to maximize net
carbon gain (discounted by probability of mechanical failure). It
allows for stand level feedbacks; specifically, changes in stem
density and canopy leaf area that may feedback to influence
individual tree growth and allocation.

Our model simulation predicts substantial changes in tree
structure – increased height, diameter, leaf area, and sapwood
area – and reduced stand density over 400 years, comparing
trees growing through the Industrial Revolution with those
growing through a constant pre-industrial [CO2] environment
(Table 1). This model predicts instantaneous water use ef-
ficiency (i.e., photosynthesis per unit transpiration) is higher
today than in a low [CO2] world, and this drives changes in
tree carbon allocation and stand structure. It also suggests an
explanation for confounding results such as those of Körner
et al. (2005): namely, that the responses of leaf area production,
stem growth and height growth differ widely under different
assumptions about stomatal physiology (Buckley 2008) be-
cause those assumptions greatly affect the adaptive landscape
on which alternative strategies for investing the extra CO2

are parsed. These non-intuitive predictions, and similarly non-
intuitive results from enrichment experiments, suggest that an
understanding of tree response to climate change may require
a more integrative and dynamical conceptual perspective than
currently used by physiologists.

Table 1. Simulated differences in tree properties after 400 years,

comparing constant 280 μmol/mol [CO2] with monotonically rising [CO2]

from 280–370 μmol/mol (rate step = 0.23 μmol/mol per year).

Variable Percent change with [CO2] rise

Tree height +9

Tree diameter +9

Tree sapwood area +36

Tree leaf area +43

Stem density −12

Input parameters used for this simulation are for a generalized

conifer tree, under unchanging climate conditions. Positive values of

percent change correspond to fertilizing effects of elevated [CO2].

The simulations assume no effect of [CO2] on photosynthetic capacity

or foliar or wood respiration rates (see text for discussion of those

assumptions).
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Even these results are based on an extreme simplification of
reality (e.g., constant environment except for [CO2]). A more
sophisticated approach, but outside of the scope of this study,
would be to obtain species and site-specific parameters for
use in this model, and use historical climate data instead of
assuming steady climate and edaphic (soil moisture, nutrition)
conditions. This would allow an evaluation of the sensitivity
of the simulations to multiple environmental variables, includ-
ing temperature, precipitation, nitrogen deposition, and atmo-
spheric [CO2].

Future Research Opportunities

The topic of the capacity of old trees to respond to environmental
change is necessarily speculative because almost no data
from controlled experiments exists to address this question.
However, future studies on this topic will benefit from continuing
improvements in research technologies that more directly allow
evaluation of old tree responses to environmental change. We
conclude here with a number of general recommendations for
future studies designed to evaluate responses of old trees to
environmental change.

Evaluating effects of multiple environmental variables
on old tree function

Variation in water, nutrient availability, pollutants, [CO2] and/or
temperature may independently and interactively affect plant
function (Luo et al. 1999; Oren et al. 2001), including in old trees.
To make progress in deconvolving and synthesizing old tree
response to multiple environmental changes, judicious choices
of old trees for study can be critical. For example, old growth
coniferous forests of the Pacific Northwest often experience low
soil nutrient status, particularly N. Moreover, N deposition in
montane forests of the Pacific Northwest has remained near
pre-industrial levels (Holland et al. 1999). Trees from such a
condition, possibly compared with trees closer to anthropogenic
sources of N, but otherwise exposed to similar environments,
could be used to evaluate the influence of environmental
changes in N as part of a suite of environmental changes
including [CO2]. Similarly, old trees that differed throughout
their lives in access to soil water or in seasonal temperature
variation could be compared and contrasted in their response
to the industrial rise in [CO2]. In particular, trees that experience
moderate temperatures year round (e.g., old growth forests of
the Pacific Northwest, or tropical regions) may be expected to
show greater response to post-industrial age [CO2] than trees
that are severely temperature limited.

Finally, selection of tree species for these studies is cru-
cial, especially regarding life history traits. In particular, trees
that remain canopy dominants throughout their lifetimes (e.g.,
Douglas-fir in the Pacific Northwest United States), or are other-

wise naturally open-grown (e.g., palm species like Washingtonia
robusta H. Wendl.) may be especially tractable study subjects.
This trait simplifies environmental history through maintenance
of a similar light environment during the same time that atmo-
spheric [CO2] has risen.

Old questions applied in a new context

Several topics of current research interest in global change
biology have yet to be examined specifically in old trees, and
have direct relevance to the questions addressed in this paper.
For example, there are no studies to our knowledge that have
examined how tree foliar and reproductive phenology varies
with both age and environmental change, although phenology
has been shown to vary with tree age (e.g.,Lugo and Batlle
1987; Augsburger 2004) and climate (e.g., Myneni et al. 1997)
and [CO2] (Springer and Ward 2007 and references therein).
However, the interactive effects of phenology, ontogeny, and
environmental change remains unexplored.

A second unexplored research area concerns whether tall, old
trees differ from young trees in nocturnal hydraulic limitation and
gas exchange (e.g., Ryan et al. 2006; Phillips et al. 2007), what
implications this holds for old tree function (e.g., cell turgor and
leaf expansion at night; Woodruff et al. 2004), and how nocturnal
climate change (as distinct from diurnal climate change) may
differentially affect physiology and growth of old compared with
young trees.

New technologies

Over the last several decades, environmental treatment and
measurement techniques have been developed that provide
new insights into old tree response to environmental change.
Canopy access to the tops of large, old trees (e.g., Shaw
et al. 2004) has opened up new research opportunities. Moving
canopy science from observation to environmental manipulation
is likely the wave of the future. For example, the webface tech-
nology (Körner et al. 2005) could be implemented on very old
trees, including those showing post-maturity growth declines.
This technology could also supply pre-industrial levels of [CO2]
to crowns of old trees as a way to ‘set the clock back’ on the envi-
ronment that old trees experienced for most of their life, thereby
allowing examination of the ‘normal’ baseline environmental
condition and physiological response of ancient trees, and
consequently providing knowledge of whether these trees have
likely already experienced an Industrial Age “treatment effect”.
Whole tree chamber technology (e.g., as described in Phillips
et al. 2004) or desert FACE technology (Jordan et al. 1999)
could feasibly be placed over very old, but relatively small trees
like millennium-aged bristlecone pines (or even in bonsai trees),
to vary [CO2] from pre-industrial to present, and future levels.

After nearly two centuries of industrialization, there is now a
confluence of factors – rapidly depleting stocks of old trees,
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exponential global environmental change, and technological
advances in canopy access and monitoring – that make the
study of old tree growth and physiology increasingly compelling
and timely. We have shown here that old trees have the
capacity to grow well past a post-maturity growth decline. Yet the
understanding of old tree responses to the environment remains
necessarily speculative, because (i) there is ultimately no sub-
stitute for time in experiments on centuries-old organisms; and
(ii) canopy access to tall, old trees remains a formidable chal-
lenge. For these reasons, modeling and observational studies
will continue to prove essential to our assessments of the
capacity of old trees to respond to environmental change.
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